125

Interaction Concepts for Learning Objects in Codewitz

WIladimir Bodrow, Irina Bodrow
University of Applied Sciences Berlin
Treskowallee 8, 10318 Berlin, GERMANY
+49 30 5019 2478

w.bodrow@fhtw-berlin.de

ABSTRACT

In this paper we present an empirical investigation of selected e-
Leaning examples for learning objects (LO) developed within the
Codewitz Project. We consider the specific features of different
interaction concepts with students when learning programming
languages and technology. Several rules and proposals important
for the design of leaning objects in Codewitz in particular as well
as for analogous e-Learning solutions are derived and described in
this paper.

Keywords
Programming education, e-Learning, distance education, learning
object.

1. INTRODUCTION

The interaction concept is a significant part in every e-Learning
application. It is responsible for the representation, dissemination,
and assimilation of knowledge to be submitted to the recipients.
The applied interaction concept supports the understanding of the
content and makes up the fundament of an efficient e-Learning
process. This is where the acceptance of computer supported
education begins and ends. During the last couple of years different
partner universities and institutions have dealt with this topic. As a
result of these dealings a number of concepts and solutions for the
development of teaching units have come up. The current state of
the results in the project is reported in the proceedings of
MMT2006 [1] or at the projects site [2].

2. EXAMPLES OF IMPLEMENTED
LEARNING OBJECTS

In this chapter we focus on some of the 180 LOs developed in the
Codewitz project and discuss the corresponding interaction
concepts. In order to stay in an academic context, they will be
analyzed without (!) any link to the developer — strictly
concentrating on their scientific value.

Example 1 The first LO concept is shown in Figure 1. The screen
is subdivided into four areas: code, execution, memory and
conditions. As part of the code area an explanation area is
integrated. The navigation is implemented by three buttons
situated between the areas in the middle of the screen. An
additional button for answering the questions about the
implemented navigation concept is also positioned there.

3rd E-Learning Conference

Bl g tes sl .

Einler tw itegers: 4 L}

Memory

(variable sddress contents

Conditions

The subfunction is declared and beging. The \-aluef|
of the parameters are copied into the variables
. S . J

Figure 1. Example 1.

Pros and cons

This solution is implemented according to the debugger concept
and step-by-step program execution. The advantages of the
interaction concept in example 1 are:

Clear subdivision of the screen into areas to highlight the
interdependence of the different resources used in the exercise.
Possibility to navigate to the specific line of code i.e. to locate
the exact line where the previous session ended.

Integrated option for input in the execution area.
Representation of output in the execution area.

In memory area humerous graphics used to explain the work
with storage resources. This provides a very good basis
especially for learners of pointer arithmetic in C++.

The following features should be considered as disadvantages of
this solution:

Integration of the explanation into the code area. This placing
of explanation will lead to confusion between source code and
what it stands for.

Generally it is not clear: which kind of interaction is in use -
instruction or explanation.

Each time the student wants to navigate to the special line of
code — implemented step-by-step — he will be confronted with
all the screens that have appeared so far. This leads to a loss of
concentration and time.

Arrows appearing simultaneously in different areas need
additional explanation. There is no advice on the screen to
understand the priority of all these arrows.

Pieces of text within the areas have no common frames: some
of them are left- other right- or centre- justified. A table frame
would support better concentration and efficient learning of the
textual content.

Coimbra, Portugal, 7 — 8 September 2006

- At different levels the LOs request the input of some numbers.
Without the student’s input the learning procedure will be
stopped. This is not self-explanatory and causes problems
especially for beginners.

Example 2 The typical screen for this example is presented in the
Figure 2.

The code:

Instructions:

minchide <cone >
sinchuide clostreams

o “Tind_area”

using namespace std; tinctiond, ta the console window

const double dPF = 3.1415926;

doubile find_areaidouble radinsg

Console window.
) = A
] T

Il mainiy Enter the tadins: 45

«
double rai:

coul << “Enter 1he rading: © << endl;
iy == dad;
double area = find_areainadi:
@ cout << oThe area Is < << aroa << ondk g

getchi):

Memory:

peturn 0; AP = 31415026
1 rad = 45
area = GI6T.7250

Figure 2. Example 2.

This concept represents a variation of the previous example. The
advantages and the disadvantages described before are valid for
this example as well. Some additional features could be mentioned:

- Based on praxis experience the instruction/explanation area is
separated from the source code on the left. All instructions are
posted there.

- The red dot in the code area points to the line currently under
explanation.

- The condition area is cut out.

- Outgoing from the beginners’ responds the application of the
non-interactive exercises (without the input of numbers etc.)
will be preferred.

- The textual content is consequently presented in table frame.

- The number of simultaneously appearing arrows is
significantly reduced in comparison to example 1.

- The application of graphics for explanatory purposes is also
reduced.

Example 3 A typical screen which represents this third kind of
LOs is shown in the Figure 3. The user interface is subdivided into
four areas: Exercise, Source code, Feedback and Dialog. The
buttons: “PREV” and “NEXT” are used to switch the task
presented on the screen. The “OK” button is responsible for dialog
with the program. Several possibilities to interact with the LO are
integrated in the dialog area. In most cases there is a field for input
or selection of one of the predefined answers to the task.

Pros and cons

The presented solution does not follow the debugger concept or
step-by-step program execution. The advantages of the
implemented interaction concept are:

- Clear subdivision of the screen into areas to support the
understanding of complexity of programming. This complexity
is represented through different structures which the
programmer has to control simultaneously.

3rd E-Learning Conference

126

- The simple avatar (the dog in the Feedback area in Figure 3)
supports motivation of the students.

- Integrated possibility for input in the dialog area.

- This example follows the constructivist educational concept
(and not mainly applied drills in step-by-step solutions).

SOFTY, YOUT AIVEWET kS Not cormect.
Try again.

4 int maini}

int counter = 0
imk wax = £

couneer should be decresenced
for (22)
[

LA CTAORE e) s should be decremenved after the else srate

W counter incrementing should De done ALTEE the &

The EoE STASMENT MAY HOT be sapty

o
returs 03) @

NEXT

Figure 3. Example 3.

The features below should be considered as disadvantageous in this
solution:

- There is no explicit explanation area on the screen. This can
result in problems especially for beginners.

- All three areas (except the code area) support interaction with
the user but the concept of this interaction and the role of the
chosen instruments within the learning process are not clear.

- The same applies to the position of these areas. Where exactly
is the important message for the student located? — On the left,
on the right or above the code?

- There is no detailed explanation of code (as opposed to step-
by-step concepts). Such explanation is very useful not only for
beginners.

- Without detailed explanation to the code students will learn
some kind of “code blocks” consisting of many lines. Only one
single description in the exercise area is given for the whole
block (mainly small program).

- The size of the dialog area does not fit the implemented input
activity.

- The students have to answer a special question concerning the
presented program code. But the explanatory knowledge
necessary for answering they have to gather elsewhere.

Example 4 A typical screen design for the fourth kind of example
is presented in Figure 4. The user interface is subdivided into three
areas: Source code, Feedback and Memory. The buttons are
responsible for navigation, similarly as in the Example 1 or 2. The
circle labeled by “i” in the source code area provides an
explanation to the line of code being under consideration.

Pros and cons

The presented solution follows the debugger concept and step-by-
step program execution. The advantages of the implemented
interaction concept are:

- Clear subdivision of the screen in areas like in previously
presented examples.
- Implemented explanation allows for the user to switch it

Coimbra, Portugal, 7 — 8 September 2006

off or on if needed. The implementation of explanations is
superior to the examples before.

- Graphics on the right part of the screen support a better
understanding of memory use.

- The solution can be used in classes (without explanation) as
well as at home (with explanations).

- CWIHOWS Sy temadic... MEIED

al
=

Sousee Code

#include <lostress.hn

class Coordinater | *:

get¥() function returns the value of y

1
to calling function. 2
w——
2
ik Y
|| verd mainiy cordi.1
Coordinater cozdl (10 cozel.d
Eozd3 = esrdl 2 f i
\ by plan|
counect

Figure 4. Example 4.

The following features should be considered as disadvantages in

this solution:

- Students have to understand the navigation concept first before

they start with the example. This provides some problems
especially for beginners.

- The use of arrows like in Figure 4 is not stringent and causes
some misunderstanding for students.

- The given explanations are very compact and have to be
complemented by the teacher in class or by other knowledge
sources (i.e. books) at home.

Example 5 The next example for the implemented LO is presented

in the following Figure 5.

Finchudie=sidio h

wold malniy &

ABinl Program. cpp)

il lrnit i,

printiEnter limit ofdhe loop:y;
sanf S &lir

o) = 11 <= limit; 1=+t
Pt "
1
PO ThiS line 15 executed after the for slatament);

Varhao ol § is checked agains e v of lanil

Stmemens after end of ooy

Figure 5. Example 5.

This example is also similar to Examples 1 or 2. Therefore the only

differences to them are listed below.

- The exceptional feature of this interaction concept is the
explanation of the program progress with the help of a flow
chart in a separate area.

3rd E-Learning Conference

127

The output area allows the input of data by the students during
the session.

The explanation to each single line given in the information
window is very short.

Additional explanation graphics in the source code as well as
in the flow chart area are less helpful because they disturb the
whole concept of the screen usage.

Example 6 The interaction concept developed in this example is
presented in Figure 6. The user interface is subdivided into two
parts: source code and explanation. The slider between both parts
is used as a border between them.

impaort jmva.sgl.Connaction:
imppent jva vyl Drivnbanagne
impaort java sql. 501 Exception;
impart java.sgl Statement;

jpukilic clavs CreateLaaflats

 Grumin Leatiets (JO0C - axampte) |

L imeart ot tne intestace ‘Tannection
impart of the claas ‘Oriverdanager
Amport of the class ‘S0OLException”
Impart of the intertace ‘Statement’
Decipration snd.
bagin of Defirdticn of the class CreateLesfists
of

static final String JOBC_DRIVER = “com.myscl jdbe. Oriver™:
‘stalic Bnal Biring URL = “JDBG: mysdl. Mocathoaticaliols™;
‘$tatic ingl Eiring USERMAME = “505685";

wtatie final S1ring PASSWORD = “12345°

The Emports deciore which sdditionsi classes, imerisces or
thourn progeam.

The interfsce Cannection is sed i conrect to seleeted
for s and transaction processing. It

object
Slring objec! crestnBiring

eonild wha
database. SOL statements are axeculed and results are
of satabiished s,

Begin of try block for ClassHotf oundCaception
Clsss foeName{ JDBC_DRIVER |; Loading of datsbase driver
chijava lang. ClassNotF ound Exception af Begin catch block for ClassHotFoendException

‘Syntem.outpeind["ClassNotF sundException: = +
sgetMassagu(l

Dutput of Exception detalls

1

Figure 6. Example 6.

Pros and cons

The presented solution does not follow the step-by-step program
execution concept. The advantages of the implemented interaction
concept are:

The concept implemented in this example strictly follows the
subdivision of the screen into two parts: source code and
explanation. The explanation area supports the knowledge
acquisition during the session.

There are two versions of explanation implemented to each line
of code. The short version is presented in the same line (similar
to Figure 6). Activating the >More< button the user gets
detailed explanation to the particular part of program as
presented in Figure 6.

The navigation through the source code is realized by two
buttons in the middle of the screen.

Both the optional detailed explanation and the navigation
according to the individual knowledge and experience provide
the support of different user models.

Additional media, such as graphics and animation, is
implemented in a separate window (Figure 6A).

The described solution can be used both in classes (with short
explanations) and at home (with extended explanations).

The arrows like those in Figure 6A connect different parts of
resources and support the understanding of complexity by the
students this way.

The following features should be considered as disadvantages in
this solution:

There are no graphics integrated into the extended explanation.
In this example the students’ influence on the procession

Coimbra, Portugal, 7 — 8 September 2006

of the program is limited to the navigation buttons.
- Testing the knowledge acquired is also not implemented in this
example.

Craats Leafiats {Animatice) L LU (5] kS

Imparnt java. sl Conmection, [Expianationy

gt jova.ak Bstsnenc The String defined in this statement bs the besis for s

'CREATE TABLE' statsment Beacts 10 the crestion of &
naw table in the datsbase. The String meets the Stencard

rowulmwmlﬂn Cuery Languags [SOL) restristions - see the soreenshat below. |

statie final Biring JDBC_DRIVER = "com.mysql jdbe. Orivee™;
‘static firal Siring URL = “JOBG g
statie final String USERNAME = "s05889";

satic il Btring PABSWORD = “173457,

pubilc stathc wold main {Saring srga{l}
{
Connection con;

CrnateSiring;
“ErmateSiring = "CREATE TABLE L
*[Lealct_Naine CHAR[3Z), ™ +
- Leaflet_iD INTEGER, ~ +

= PG_ID INTEGER. = + In program
= Price FLOAT, = = dectaredinitiaf
* Sales NTEGER, = + cliosses, objrets.
ee

= Tatal INTEGER, = + vailabies ote.
* Colour INTEGER, * +
berPuges INTEGER |™;

[Frogram Resseurces ——

(Bcreenahet &

iy

Class forName| JOBC_DRIVER);
¥
catehjavalang ClassNotFourdEscaption s)
i
System.out print] ClmsNotFounaEscepticn: © +
wgribessagei);

¥

Figure 6A. Example 6.

Example 7 Several LOs were implemented in the Codewitz project
based on a special development environment. Those environments
were also produced by the project partners. An example for such
learning objects is presented in Figure 7.

Modtulo differed from 0 -> piq is not even /)| Cout

Pick a nusbee: &

=l ||] 3

T T [B
retum e, l"‘n]

i

— A

[lsEven]
numeratar (1]

denominator [7Z]

i{gl=0&a sEven(p, q)) |
Goul << g wasn) 260" <o end, |

| i=]
ooul €€ g WS 20 <o endd,

1

Hain controts.

2
Mlﬁwlm.Tmlum

=

Figure 7. Example 7.

Some of the common features used in such a LO are well designed
and realized. A good example for it is the Main controls area
(shown in Figure 7). Students can navigate individually through
the learning process according to their plans. Otherwise the
generalized representation of source code or other components on
the screen does not allow their appropriate appearance there. So the
currently discussed line of source code can be outside of the visible
area. Nevertheless those developments are very interesting and will
allow the production of LO with small resources.

Examples 8 and 9 Some solutions like shown in Figures 8 or 9
concentrate on the application of special development tools or
presentation techniques.

3rd E-Learning Conference

128

int [] weeklyTemps; The cells in an array
are numbered

consecutively from 0

< 1o 6.

For example
weeklyTemps[3] I8
the fourth cell in the
array weeklyTemps

weeklyTemps = new int[7];

weeklyTemps [6]
weeklyTemps[5]
waeklyTemps [4]
weeklyTemps [3]

weeklyTemps [2]
weeklyTemps [1]
weeklyTemps [0] Show O
125445 7 87, 3 59
I I I I | |
2 \186\, 4
3418 65M22112
computer memory
(@) Back ARRAYS 40f7 Next (@)
Figure 8. Example 8.
=101
FO o abion O & stens 20
PO Zhuotn abion 1
Load sequence | Save sequance
Aun Stop
[Reset
Edil code
] o
%) Spead 1
S < “; Tuoktsds 071D 0 o | Huluttaéa 17101
Thread sctve
e SO = Enablod P % Enabled
bl sn_indes] = g sproden; Priody1 Vi) ¥ <ILE
@rirodim = g ronediem v 1, Vbl
pcpsri e T | i o o1 2
o [+ s | o - s |
ch—-nm] Tuoaja 2710 2 ':I::ll = Fuluttata 3/80 3
Thisad actve [raspary Thewad activk
lm'. | [+ Enabilgs :JI» = ﬂ-;bll’_‘-.(l]l jl. ¥ Enmbied
@ »bully sn_ndes) = g sprodmn: Priony 1 Vig e | = Pty 1
A AR (b T 1) eIl i P Y o enitmen o 41| |
: = ;l" otma | s [s stap |
oD PDE PO w2 e 1. gt 2 (3 s
it st O, vapaity 2 /2
st sl vehe O
T b 1
L TER -
It 3 wmbon 01
radan 4 vebae O
s 1 2l
[Harwin Appied Wik

Figure 6A. Example 6.

For an effective usage of such LOs, students at first have to learn
and understand the complexity implemented in such interfaces.
Obviously those solutions are useful for advanced education in
programming. For students in higher semesters the special
programming techniques rather than the intuitive concept of
interaction with the tool are important.

3. CONCLUSIONS

Based on the analysis made some rules for the (re)design of the
Codewitz learning objects can be derived. Those rules are of
common interest for analogous e-Learning solutions as well.
Different dimensions of consideration build the foundation for
classifying them.

Supervised versus non-supervised dimension

The interaction concepts implemented in examples 1, 2, 3, 4, 5, 7,
8 and 9 require additional explanation and therefore could be used
in supervised teaching or learning processes. Some of them need
more supervision to understand the source code like examples 3, 7,
8 and 9. The application of others (examples 1, 2, 4 and 5)
presupposes at least some introductory in class lectures before the
learners can start studying on his own. The only example
consequently oriented on non-supervised learning is example 6.

Coimbra, Portugal, 7 — 8 September 2006

Instructions versus explanations

In some examples (3, 7, 9) only instructional concepts of
interaction are implemented. In others (examples 1, 2, 5 and 7) a
mixed concept with a combination of instruction and explanation is
realized. In examples 4 and 6 the explanation concept was used.

Different approaches of teaching/learning

All step-by-step or debugger based implemented interface concepts
follow the drilled strategy of teaching/learning among these are the
examples 1, 2, 4, 5, 7, 8, and 9. Whereas in the examples 1, 2, 4, 5
and 8 the drilled approach is the only one implemented, in example
7 and 9 additional variants are realized, too. Only example 3
follows the constructivist concept and example 6 offers a flexible
navigation and an organization of the learning process.

Interface design

A clear subdivision of the screen into areas is realized in all
examples. The source code area is consequently located on the left
part of the screen in the examples 2, 4 and 6. Most problems with
the screen subdivision appear in example 9. In other examples the
problems mainly concern the role of the area and its placement on
the screen.

Graphics and media

In the examples 1, 4, 5 and 8 various graphics are used to explain
the content directly on the main screen. In example 6 graphics and
animation are used in a separate window. The animation is also
implemented in the examples 4 and 8. In a number of applications

3rd E-Learning Conference

129

graphics could support the process of content understanding
efficiently.

Interaction activities (input)

In most of LOs (examples 1, 2, 3, 5 and 7) the option for input is
integrated into one or another area.

Adaptivity
Only in the examples 4 and 6 students can navigate efficiently to
the special line of code and start or continue the session there. The

step-by-step implementation in other examples provides too much
unrequired information which cost time and concentration.

Visualization tools — arrows

Arrows as a special tool for the visualization of knowledge
(particularly meta-knowledge) are not used in examples 3, 7 and 9.
In most examples there is no stringent concept for using arrows. In
order to visualize meta-knowledge the arrows have to connect at
least two areas on the screen, to illustrate details of the source code
they have to stay within code area. The same problem occurs in the
analysis of the learning metaphor and the corresponding template
for LOs in general and used colors and text formatting in
particular.

4. REFERENCES
[1] MMT2006 Conference Proceedings, Tampere 2006.

[2] http://www.codewitz.com

Coimbra, Portugal, 7 — 8 September 2006

http://www.codewitz.com/

	INTRODUCTION
	EXAMPLES OF IMPLEMENTED LEARNING OBJECTS
	CONCLUSIONS
	REFERENCES

