
119

Evaluation of programs in Informatics Contests:
case of implementation of graph algorithms

Jūratė Skūpienė
Institute of Mathematics and Informatics

Akademijos st., 4, LT-08663 Vilnius, Lithuania
+370-5-2109344

jurate@ktl.mii.lt

Antanas Žilinskas
Vytautas Magnus University

Vileikos str. 8, LT-44404 Kaunas, Lithuania
+370-6-8601234

antanasz@ktl.mii.lt

ABSTRACT
During various high school olympiads and competitions in
informatics there are presented a lot of tasks with graphs.
Contestants express their algorithms in programs which are
graded using black-box method. The code analysis that would
help to understand the algorithm is time consuming and therefore
not applied in the grading process. To assist it graph visualization
tool IOVIZ was created. It visualizes graphs implemented in
Pascal source programs. The tool was tested with programs
designed by the competitors during Lithuanian Olympiads in
Informatics.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education.

General Terms
Algorithms, Measurement, Performance, Human Factors.

Keywords
Informatics olympiads, programming contests, visualization,
program animation, graph algorithms.

1. EVALUATION PROBLEMS IN
INFORMATICS OLYMPIADS
There are many informatics (computing, programming – there is a
variety in naming) competitions intended for high school students.
The most prestigious competition is International Olympiad in
Informatics (IOI). IOI is an annual international informatics
competition for individual contestants from various invited
countries, accompanied by social and cultural programs, initiated
at the 24th General Conference of the UNESCO in 1987 [13].
There is a variety of other competitions that are organized in a
quite similar way to IOI’s. For more references [12], [9], [18], [1].

IOI competitions focuses on informatics problems of an
algorithmic nature. The IOI contestants are required to express
their algorithms in one of the allowed programming languages
and they must engineer their programs to run flawlessly, because
marking is based on automated execution [20]. The allowed
programming languages are Pascal, C and C++.

Formal algorithm correctness verification methods that are used in
the scientific community are not suitable in the informatics
olympiads due to timing restrictions. In most of the competitions
due to a vast amount of solutions grading is done using so called

black-box method, i.e. it is done automatically, by running
programs with various test inputs designed in advance, no sources
are analyzed. For each correct output, produced within certain
pre-defined limits, points are awarded. It is stated in [5]: „In
practice, sometimes an incorrect solution scores far too many
points, sometimes an asymptotically better solution scores less
points than a worse one, and sometimes a correct solution with a
minor mistake scores zero point.“ We refer for more references on
grading problems to [17], [5], [22].

Therefore there are many cases where the authors of the tasks or
the evaluators might be willing to analyze some programs
designed during the contest. However, analysis of program source
in order to understand the algorithm is not always easy due to a
variety of cultural elements in their programs (e. g. the variables
are named by the contestant’s native language words) as well as
different (and sometimes poor) programming style. A tool that
could simplify understanding and analysis of competitors’
programs, their tricks and faults would be valuable.

Tasks, which comprise graphs are very common in various
olympiads and competitions in Informatics. In the final round of
Lithuanian National Olympiad such tasks comprise over 20% of
all tasks [2]. The percentage in the Baltic Olympiads is similar or
even higher. In IOI’2005 three out of six tasks contained graphs
either in their description or it was meant in model solutions [10].
It might be assumed that tasks with graphs occur in nearly every
informatics olympiad. However neither the word graph nor other
related terms (e.g. graph vertex, edge, etc.) usually are used
directly in task formulations. Typically, they are described
indirectly, using some kind of metaphors [21].

2. VISUALIZATION AIDED EVALUATION
Visualization can help to aid programs that contain implemented
graphs by visualizing graphs and their behavior during program
execution (e.g. which graph vertexes have been visited, etc).

An important practical task in creating algorithm visualizations is
to specify how the visualization is connected or applied to the
algorithm. There are two main approaches to algorithm
visualization [15], [3]. One of them is based on interesting event
paradigm. The important or interesting events in the program
source have to be identified and calls to visualization procedures
have to be inserted into the source. The second approach, called
state mapping, creates visualization automatically depending
upon the values of the program variables.

The choice of the approach is influenced by the conditions under
which the contestants programs are analyzed. On the one hand the
evaluators or the task designers have no prior knowledge of how

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

120

it is designed. Moreover, the program source can have a poor
programming style. On the other hand they are expected to know
the task formulation and background as well as some model
solutions. There is also a wide spread tradition in the olympiads in
informatics – the evaluators do not change competitors source
code.

Among the major event driven approach drawbacks are the
unavoidable source modification (or at least its augmentation) and
the requirement to know the source code quite well in order to
identify all the interesting points. This implies that only the state
driven approach to visualization of competition programs is
possible. State driven designs can create visualization without
(much) code modification, but they cannot be easily customized.
Abstractions are more difficult to represent, and state driven
visualizations lack smooth transitions [19].

Conventional debuggers also have some features of state mapping
approach, for they provide variable values as the values change
during program execution [3]. This similarity of approaches
determined that IOVIZ was designed as a debugger with
visualization possibilities. The user willing to get graph animated
has to interpret the meaning of variables, identify which of them
represent graph data structures and choose the method of graph
implementation from the list of available ones.

When designing IOVIZ, some efforts were made to create a tool,
simple to use. A more complicated tool might be met with some
resistance as it happens in other cases with algorithm visualization
tools. Especially taking into account that informatics olympiads
are not daily event and take place just two-three times a year. The
reasons for unwillingness to accept new algorithm visualization
tools were presented in [8].

Once the program is run with the debugger in order to understand
how the program works and what kind of algorithm was encoded,
it is enough to analyze the program execution with small data.
Large data sets basically help to determine how effective the
solutions are and they are highly important in automatic grading
but not in a step by step program execution analysis. Therefore
the IOVIZ is not intended to display large graphs.

There are created other environments for graph visualization.
However they are meant for the tutors and for teaching purposes
and they require some intervention into the source code. An
example of such an environment can be EVEGA (An Educational
Visualization Environment for Graph Algorithms) [16].

IOVIZ acts as a simple Pascal IDE. IOVIZ has only the very basic
features and can’t be considered as a replacement of Pascal IDE
for application development. IOVIZ uses FPS package which has
integrated FreePascal compiler and GDB debugger. More
reference on FPS [6]. In some specific cases GDB support for
Pascal is limited [7], and those limitations are inherited in IOVIZ.

Motivation for Pascal. As distinct from universities, Pascal is still
popular in international high school olympiads competitions, even
though its popularity is slowly decreasing. Pascal is the
dominating programming language in Lithuanian National
competitions. Survey of IOI’2004 reveals that 46.58% contestants
indicated that they used Pascal debugger during the competition
[11]. In BOI’2005 (Baltic Olympiad in Informatics) 49.1% of
contestants used Pascal, while in Lithuanian National competition
in 2005 89.3% of contestants used Pascal.

GDB also supports C/C++, the other two languages allowed in
informatics olympiads. Therefore support for those languages can
be added to IOVIZ as well.

3. ANALYSIS OF GRAPH
IMPLEMENTATION IN PROGRAMS
DESIGNED DURING CONTESTS
There are two most common computational representations of
graphs: adjacency lists and adjacency matrices. These
representations of graphs can be implemented in different ways,
e.g. an adjacency list can be encoded using pointers, array of
records, two-dimensional array. The competitors might think of
many other (not necessary reasonable) implementations. The
graphs in the tasks or their solutions can also be very different and
have various features or attributes. Moreover, there are some tasks
in the olympiads, where a good solution should be memory
effective and a common implementation of graphs and other data
structures would not of work because of predefined memory
limitations. Example of such a task could be The Troublesome
Frog used in IOI’2002 [14]. We investigated the real graph
implementations designed by the competitors during informatics
contests.

We analyzed three tasks presented in Lithuanian Olympiad in
Informatics and their solutions designed during the contest.
Lithuanian Olympiads in Informatics are organized under IOI
model and therefore inherit its grading challenges and problems.
Below the brief formulations of the tasks are presented and
commented in graph terms.

Task 1. Acquaintances (2001, Final round). N persons are
expected to attend a party. It is known that if any two persons
have a common acquaintance (or make one during the party) they
will get acquainted during the party. However, one person didn’t
come to the party and as a result the people split into groups who
had no common friends, i.e. it became impossible for all the party
attendants to become acquainted. Write a program to find a
person whose illness might cause such a situation. In other words
friendships relations represent a connected undirected graph. Find
an articulation vertex (whose removal disconnects the graph). It is
known that the graph contains at least one articulation vertex.

Task 2. Virus (2003, Final round). Computer network makes an
undirected (not necessarily connected) graph. Each computer
either has anti-virus protection or not. The virus starts from
computer A and passes in parallel all the edges leaving A. It
travels through network and destroys every edge it passes
through. If the virus reaches the computer with anti-virus
protection, then both the virus and the anti-virus protection are
destroyed. Write a program to find when (and if) the virus reaches
computer B.

Task 3. Computer Network (2005, Final round). A set of
computers and switches have to be connected into one connected
network, i.e. to form a tree. Each computer has to be connected to
exactly one switch, while to one switch there can be connected
many devices (either computers or switches). Given the expenses
of connecting every possible pair of devices, write a program to
find the network connection with the lowest expenses.

In IOVIZ there were implemented three graph implementations:
Adjacency lists implemented as array of records, Adjacency lists

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

121

implemented as two-dimensional array and Adjacency matrix
implemented as two-dimensional array.

Let us make several notes on others not yet implemented in
IOVIZ graph representation cases. Set based graph
implementations use Pascal set data type. They are not very
common, because a set in Pascal cannot contain more than 256
elements, and therefore this type is not suitable to implement
graphs containing more vertices. Pointers in graph
implementations were used only for memory saving reasons, e.g.
instead of a two-dimensional array, there was a pointer to the two-
dimensional array.

Graph representation as list of edges in some cases was used to
represent a tree. In other cases the contestants might have been
affected by input data format, where the graph was presented as
list of edges. This is not implemented in IOVIZ, and should be
considered as one of guidelines for IOVIZ improvement together
with other above mentioned implementations.

Complicated or unusual (e.g. array of strings) representations of
graphs make a very small percentage of total programs and they
are not considered for implementation in IOVIZ.

4. GRAPHS’ VISUALIZATION
Graphs in IOVIZ tool are visualized in such a way that for the
evaluator it would be as easy as possible to use it. IOVIZ has
main commands of a debugger, i.e. only the features that are
important when the program is traced in order to understand how
it works.

Data structures (i.e. variables), which are displayed as graphs can
be considered as another type of watches. The user has to indicate
the variable(s), which represents the graph(s) and how the graph
is implemented, i.e. to choose from the available
implementations. All the visualization settings can be changed or
updated during debugging (tracing). In general it is difficult to
predict which graph layout is most suitable for a particular task
(data), so the user can drag vertices and edges and modify the
layout.

Animations which change graph layouts automatically are
confusing, because it is complicated for the user to follow all the
changes, happening on the screen [4]. IOVIZ does not change
graph layout automatically. However the graph might loose its
good layout when many new vertexes during algorithm execution
are added. The choice is left for the user, who decides when and if
to rearrange the graph automatically or manually.

The analysis of programs, designed during contests, shows a
tendency to avoid more complicated data structures to represent
complicated graphs. Instead several separate data structures are
created and the graph is assembled from the components.

For example in Network task it is required to find one graph
which connects all the computers and switches into one network.
However, in many competitors’ programs two different graphs
were created. One graph – to represent computer–switch
connections, another – switch interconnections.

Table 1. Graph implementation in analyzed programs

Task

A
cq

ua
in

ta
nc

es

V
ir

us

N
et

w
or

k

Total No of programs 42 32 117

Array of records 6 12 -

Two-dimensional array 12 - -
Two-dimensional array

using pointers - - 1

Two-dimensional bit
array 1 - -

A
dj

ac
en

cy
 li

st
s

Array of records using
pointer - - -

Two-dimensional array 10 20 47

A
dj

ac
en

c
y

m
at

rix

Two-dimensional array
using pointers 5 - 2

Two-dimensional array - - 27

Several arrays - - 16

Array of records - - 29

Array of strings - - 6

Stored in a text file - - 4 Li
st

 o
f e

dg
es

Other complicated
structure - - 9

Array of sets 4 1 -

Se
t b

as
ed

im

pl
e-

m
en

ta
tio

n

Array of records,
neighbouring vertices

stored in sets
1 2 -

Array - - 21

B
ip

ar
tit

e
gr

ap
h

Array of records - - 1

Graph implemented in
different ways 2 3 48

Graph not implemented 6 - 16

Another example comes from Virus task. If the graph was
implemented as an array of records, then the information whether
the computer (graph vertex) has anti-virus protection or not was
stored in one of the record’s fields, i.e. in the same data structure.
If graph was implemented as a two-dimensional array, then
additional vertex attributes (existence of anti-virus protection)
were implemented as a separate one-dimensional array.

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

122

Table 2. Statistics of graph components implemented
separately from the main graph

Task

A
cq

ua
in

ta
nc

es

V
ir

us

N
et

w
or

k

No of programs with graphs
implemented 36 32 101

No of programs without extra
components 5 7 8

1 component 17 7 29

2 components 10 7 30

3 components 4 6 18
No of

programs with

≥4 components - 5 17

Set 8 3 1
One dimensional

array 7 11 4

Dynamical list 1 - -
Vertex

components

Array of
enumerations - - 1

One dimensional
array 19 16 26

Array of records 1 5 - Vertex list
components

Array of records
using pointer - 1 -

Graphs as components 2 3 81

The components encountered were classified into the following
categories. Graph components are graphs themselves and can be
added as components to other graphs and they can be treated as
separate graphs as well. Vertex components are lists of all graph
vertexes with assigned values to each vertex (see Fig 1 and 2).
They can be added as components to other graphs, though they
can’t be visualized separately in IOVIZ. Vertex list components
are lists of vertexes without assigned vales, i.e. being included
into the list already means possession of certain attribute. They
can also be added to graphs as components and can’t be
visualized separately (see. Fig 3). The color is utilized to portray
this type of components. IOWIZ allows joining to the graph at
most two such components.

IOVIZ allows visualizing several different graphs at the same
time, and they can be assembled from various components. The
same components can be added to different graphs at the same
time. When assembling graphs there has to be one-to-one
mapping in all the components (e.g. vertex no 1 should keep the
same index in all the components). Among the analyzed programs
we found no cases where this mapping would be violated.
However in Network task when the resulting network was
presented as two separate graphs and the same indexes were used
in both cases, there was no possibility to join them. This is not
implemented in IOVIZ.

Figure 1. Task: Acquaintances. Graph image after reading

input data.

Figure 2. Task: Acquaintances. The same graph as in Fig 1;

Edges, leaving from vertex 3 were removed and the
connectivity of the remaining graph is checked by recursively
traversing it; vertex component indicates whether the vertex

was already reached.
There also were encountered cases where graph was implemented
as two-dimensional array and where a column of the array
contained vertex components. This can’t be identified
automatically and IOVIZ foresees a possibility to mark one
column or a row as not displayable one or as a vertex component
(see Figures 4 and 5).

5. CONCLUSIONS AND FUTURE WORK
Graph visualization tool IOVIZ was created to adapt the needs of
evaluators and problem designers that have to analyze Pascal
programs with graphs implemented, designed by contestants
during informatics olympiads and other similar contests. IOVIZ
satisfies the most essential requirement: state-mapped
visualization, which does not require good understanding of
program being analyzed and visualization of graphs implemented
in competitors’ programs.

The investigation of solutions (programs) to three graph problems
shows the most common ways of graph implementation and a
tendency to implement more complicated graphs by decomposing
graphs into separate structures. IOVIZ allows assembling graph
from various components.

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

123

There are a few ways to continue the research and to improve
IOVIZ. Several other most common graph representations should
be implemented in IOVIZ, more flexibility of graph assembling
from the components can be given and support for C/C++, the
other two programming languages allowed in high school
informatics olympiads can be added. In this research there were
analyzed only programs solving the tasks of Lithuanian Olympiad
in Informatics. Analysis of graph implementations in programs
designed by contestants during higher level olympiads, e.g. Baltic
or International Olympiads in Informatics might show interesting
results.

Figure 3. Task: Virus. Graph vertexes have two additional
components: 1) vertex component: one dimensional array
where each vertex is assigned either –1 (computer has anti
virus protection) or 0 (no anti-virus protection) or the time
when the computer was infected; 2) vertex list component: set
of infected vertices (they are colored in grey). Computers 1
and 2 have been disconnected by the spreading virus.

Figure 4. Task: Acquaintances. View of graph after reading
input data; Graph was implemented as two-dimensional array,
however, the ‘zero’ column was introduced to store the degree of
a vertex. Therefore the graph is misrepresented.

Figure 5. Task: Acquaintances. ‘Zero’ column is marked as not
displayable. Now the graph representation is correct.

6. REFERENCES
[1] Boersen R., Phillips M., Programming contests: Two

innovative models from New Zealand. International
Workshop, Perspectives on Computer Science Competitions
for (High School) Students,
http://www.bwinf.de/competition-workshop/; January 25-28,
2006.

[2] Dagienė V., Skūpienė J., Analysis of solving methods and
complexity of Algorithmic problems in Lithuanian
Olympiads in Informatics. In Lithuanian Mathematical
Journal, ISSN 0132-2818, 43(spec. ed.), 2003, 209-214. (in
Lithuanian).

[3] Demetrescu C., Finocchi I., Stasko, J, Specifying Algorithm
Visualizations: Interesting Events or State Mapping? In
Software Visualization, Springer-Verlag Berlin Heidelberg,
16-30.

[4] Diehl S., Görg C., Kerren A. Animating Algorithms Live and
Post Mortem. In Software Visualization, LNCS 2269, 2002,
46–57.

[5] Forišek M. On suitability of programming competition tasks
for automated testing. In International Workshop,
Perspectives on Computer Science Competitions for (High
School) Students, http://www.bwinf.de/competition-
workshop/; January 25-28, 2006.

[6] Free Pascal System FPS
http://aldona.mii.lt/pms/fps/en/index.html.

[7] GDB: The GNU Project Debugger, GDB Documentation,
http://www.gnu.org/software/gdb/documentation/;

[8] Hundhausen C., Douglass S., Stasko J., A Meta-Study of
Algorithm Visualization Effectiveness. In Journal of Visual
Languages and Computing, Vol. 13, No. 3, June 2002,
259-290.

[9] International Workshop, Perspectives on Computer Science
Competitions for (High School) Students,
http://www.bwinf.de/competition-workshop/ , January 25-
28, 2006.

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

124

[10] IOI’2005 Tasks and Solutions, ISBN 83-917700-9-5, 2005.
[11] IOI’2004 material

http://olympiads.win.tue.nl/ioi/ioi2004/surveys/contestants.ht
ml;

[12] IOI, International Olympiad in Informatics,
http://www.IOInformatics.org/.

[13] IOI Regulations;
http://olympiads.win.tue.nl/ioi/rules/index.html, 2002.

[14] IOI 2002 Competition, Yong-In, Korea, 2002, 14-19.
[15] Kerren A., Stasko. Algorithm Animation J.T. In Software

Visualization, LNCS 2269, pp. 1–15, 2002.
[16] Khuri S., Holapfel K. EVEGA: An Educational Visualization

Environment for Graph Algorithms. In Proceedings of the
6th Annual Conference on Innovaton and Technology in
Computer Science Education, ITiCSE 2001. ACM Press,
2001.

[17] van Leeuwen W. T. A Critical Analysis of the IOI Grading
Process with an Application of Algorithm Taxonomies.
Master’s Thesis, Technische Universiteit Eindhoven, Faculty
of Mathematics and Computing Science,
http://www.win.tue.nl/˜wstomv/misc/ioi-analysis/thesis-
final.pdf, October 2005.

[18] Manzoor S., Analyzing Programming Contest Statistics, In
International Workshop, Perspectives on Computer Science

Competitions for (High School) Students,
http://www.bwinf.de/competition-workshop/; January 25-28,
2006.

[19] Sumner N., Banu D., Dershem H. JSAVE: Simple and
Automated Algorithm Visualization Using the Java
Collection Framework. In Proceedings of the tenth annual
Consortium for Computing Sciences in Colleges, October
2003.

[20] Verhoeff. T. The 43rd International Mathematical Olympiad:
A Reflective Report on IMO 2002. In Computing Science
Report 02-11, Fac. of Math . and Comp. Sc., Eindhoven
Univ. of Technology, Netherlands, August 2002.

[21] Verhoeff T. Concepts, Terminology, and Notations for IOI
Competition Tasks. Document presented at IOI 2004 in
Athens, 12 Sep. 2004.
http://olympiads.win.tue.nl/ioi/sc/documents/terminology.pd
f

[22] Verhoeff T. The IOI Is (not) a Science Olympiad,
Competitions for (High School) Students,
http://www.bwinf.de/competition-workshop/; January 25-28,
2006.

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

	EVALUATION PROBLEMS IN INFORMATICS OLYMPIADS
	VISUALIZATION AIDED EVALUATION
	ANALYSIS OF GRAPH IMPLEMENTATION IN PROGRAMS DESIGNED DURING
	GRAPHS’ VISUALIZATION
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

