
193

Edu.LMC: a new LMC simulation approach using LMC
Paradigm

Isabel Pedrosa
ISCAC

Quinta Agrícola, Bencanta
Coimbra

+351.239.802000

ipedrosa@iscac.pt

António José Mendes
DEI - FCTUC

Polo II, Pinhal de Marrocos
Coimbra

+351.239.790000

toze@dei.uc.pt

Mário Zenha Rela
DEI - FCTUC

Polo II, Pinhal de Marrocos
Coimbra

+351.239.790000

mzrela@dei.uc.pt

ABSTRACT
Little Man Computer (LMC) Paradigm, a simple representation of
a real computer system with pedagogical purposes, was firstly
presented in 1965. It follows von Neumann’s Architectural Model
and uses a simplified instruction set. Since then, many simulators
have been developed based on this Paradigm. Mainly, those
simulators have been designed to be used by undergraduate
students in Computer Architecture courses. We developed a new
LMC simulator – edu.LMC –created especially for students with
very basic skills on Computer Architecture, mostly not majors on
Computer Science or Computer Engineering. This is a special
purpose simulator with a clear pedagogical focus, tested and used
during Computer Architecture classes for a Management and
Informatics course. edu.LMC includes many features that are
difficult to find together in other LMC simulators. Some existing
simulators are more complete, but also too complex to be used in
this learning context. In this paper, we present edu.LMC's main
characteristics, some utilization examples and preliminary
evaluation results.

Categories and Subject Descriptors
K.3.[Computers and Education]: K3.1 Computer Uses in
Education and K.3.2 Computer and Information Science
Education

General Terms
Algorithms , Languages.

Keywords
Computer Architecture, Little Man Computer, Simulation.

1. INTRODUCTION
Simulation and Computer Architecture (CA) Education are very
often found together and results from this partnership are referred
by [8] as making possible for “students to learn the fundamentals
of computer organization/architecture by visually observing and
interacting with animated data flow within a particular or real
machine” and “using animated resources”. Such partnership can
be found on the many repositories of educational resources on
Computer Architecture Simulators, namely [6] and [7].

However, for Management and Informatics (MI) students'
learning context, we were looking for CA Simulators that could
be used during classes (or as a tool for students’ autonomous

work, outside classes) but with no need of previous significant
skills on CA. One of the possibilities was Little Man Computer,
LMC, based on LMC Paradigm. LMC Simulators are simple
instruction level simulators and very simple single accumulator
based architectures with a small number of instructions, suitable
for a first course in Computer Science.

LMC simulators allow students to write and test their own
programs using a very simple instruction set. Furthermore, some
authors, [5], consider that “LMC Simulators are also important for
students to understand Operating Systems (OS) concepts, to
understand that Reset is similar to bootstrap process of a real
computer accessing a predetermined address in ROM to load the
OS kernel”. We tested some of those LMC simulators: Son-of-
LMC [1] and three similar approaches (Friend of Son of Little
Man Computer, FoSoLMC, available at [11], Acquaintance of
Friend of Son of Little Man Computer, AoFoSoLMC, presented
at [12] and LMC Clone accessible form [13]), Shockwave
simulator [1], [4] available at [14], Interactive web-based LMC
Simulator - Illinois State University, referred in [1], [3], [4], [5],
[9], [10] and available at [3]. After these tests we detected some
points that could be improved with a new simulator:

• Different instruction set: most LMC simulators use
different instruction sets when compared with the
original LMC Paradigm.

• Difficulty in program writing: many LMC simulators
require programs to be written using 3 digits codes
instead of mnemonics and don’t allow to import
programs in text files neither to save programs or
reopen previously saved files.

• Weak input/output support: there are LMC simulators
that don’t make very clear how inputs/outputs are
treated.

• No print option: many LMC simulators don’t allow
printing.

• No help or example files: mostly there aren’t elements
to help learning LMC “language” built into the
simulators.

We have also collected some good practices that we consider
important to preserve in our new LMC Simulator, Educative
LMC, edu.LMC. For its design we focused on developing a
pedagogically adequate LMC Simulator to our main target public
(MI undergraduate students) and to include functionalities capable

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

194

of making edu.LMC an acceptable tool to students’ autonomous
learning sessions.

2. LMC PARADIGM
LMC Paradigm has been presented in 1965 by Stuart Madnick
and John Donnovan. Irv Englander in his textbook [2] has
adopted and developed this Paradigm to explain its similarities
with a real computer system. Components of LMC Paradigm have
a direct correspondence with elements of John von Neumann’s
Architectural Model as shown in Figure 1 and Table I. Many
LMC simulators have been developed since then some of them
are currently used in many universities at undergraduate
Computer Architecture courses.

Figure 1: the main components of Little Man Computer

Paradigm (grey colour) versus John von Neumann’s
architectural model (white rectangle) [adapted from Irv

Englander]
As a conceptual approach, LMC Paradigm represents easy

concepts and is a very simple way to understand the functional
areas of a real computer system: ALU (Arithmetic and Logical
Unit), Control Unit, Memory, Program Counter and Input/Output
Areas. LMC main area is a mailroom whose fundamental
components are: 100 mailboxes numbered with 2 digits from 00
to 99 (Memory), a calculator (ALU), an instruction location
counter (Program Counter), input and output baskets (I/O) and a
Little Man (Control Unit) that supervises program execution.

Table 1. Table captions should be placed above the table

LMC
Paradigm

Component

Description John von
Neumann

Architectural
Model

Mailboxes Stores decimal coded
numbers: program
instructions, user numbers
or operations results

Memory

Calculator Stores (temporarily) input
values or output results,
does simple arithmetic
addictions and
subtractions

ALU, Arithmetic
and Logical Unit

Input / Output
Baskets

Recipients to
communicate with the
outside of the mailroom

Input/Output

Instruction
Location
Counter

Identifies the instruction
being executed at a
specific moment

Program Counter

Little Man Little Man Control Unit

Little Man
steps

 Bus Connections

LMC Paradigm uses an instruction set based on ten different
instructions. With these simple instructions, presented on Table II,
it is possible to write programs with 3 digits decimal-encoded
instructions or mnemonics (if we want to use an easier and
simpler approach). It can represent an introduction to Assembly
Language, a usual topic in Computer Architecture courses. LDA,
STO, ADD, SUB, IN, OUT, COB/HLT are part of the basic LMC
instruction set. They can be used to design simple programs with
linear sequence between the instructions. LMC extended
instruction set, including BR, BRZ and BRP, makes possible to
write programs with decisions based on calculator contents.

Table 2. the LMC Paradigm’s instruction set

Category Mnemonics 3 Digits
Code

Description (pseudo-
coded)

Ins.
set

LDA 5XX Calculator
[mailbox XX]

Basic Data
Movement

STO 3XX [mailbox XX]
Calculator

Basic

ADD 1XX Calculator
Calculator+
[mailbox XX]

Basic Arithmetic
operations

SUB 2XX Calculator
Calculator–
[mailbox XX]

Basic

IN 901 Calculator
input value

Basic Input/
Output

OUT 902 Output value
Calculator

Basic

Stop COB/HLT 000 Stops the program Basic

BR 6XX Jumps to mailbox
XX

Exten
ded

BRZ 7XX If Calculator=0
Then

Jumps to mailbox
XX

Exten
ded

Branches

BRP 8XX If Calculator>=0
Then

Jumps to mailbox
XX

Exten
ded

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

195

3. EDU.LMC SIMULATOR
We have developed a new LMC simulator – edu.LMC. It
consists on a Win32 application, created specifically for
students with very basic skills on Computer Architecture,
mostly not majors on Computer Science or Computer
Engineering. This is a special purpose simulator, with a
clear pedagogical focus, tested and used during Computer
Architecture classes for our MI course. edu.LMC uses
instruction mnemonics based on LMC Paradigm, allows
instruction commentaries and verifies each instruction
syntax before the simulation starts. Students can create,
run, debug, print and save programs. This simulator
includes an examples database and a help area describing
each instruction. We aimed to create a simulator that
represents a close approach to LMC Paradigm, including
all functionalities and features that are difficult to find
together in other simulators. Additionally, edu.LMC is very
user friendly because our main target public is
undergraduate students on MI.

3.1 The application
The application window is presented at Figure 2. edu.LMC
simulator is divided into four main areas:

• Editor Area: for writing programs using
mnemonics. It is possible to write instructions
directly or to open programs saved in text files with
.lmc extension (if they follow a predefined
structure, as shown in Figure 3). Programs are
verified syntactically as the student writes each
instruction and the operation code (opcode) is
generated for each instruction. Instruction
mnemonics are picked from a listbox directly
linked to an instruction database. User can’t
proceed if neither the instruction nor parameters
are wrong. There are also locked areas - the ones in
grey: instruction number and opcode. Operations
like add/delete lmc program lines are possible at
any program line. Load operation puts the
corresponding opcodes in mailboxes. edu.LMC
saves programs, presents the current program
name, creates new programs even when another is
open (in which case it clears the work area), allows
printing the program and all commentaries and
verifies all syntax errors or inputs that can not be
supported.

• Mailboxes Area: shows the mailboxes and their 3
decimal coded contents. The first ones are program

instructions and, usually, the last ones are values
(data) stored by programs.

• Execution Area: other functional LMC
components like calculator, counter (for instruction
location counter), last instruction executed
(important if there are jumps), instruction
mnemonic, operation mode, flags, input and output
boxes, an option to display the output (if the output
sequence is important).

• Execution Control Area: 4 modes to execute
LMC programs, Run (execute from 00 instruction
until HALT), Trace (Step by Step), Next I/O
(execution stops only for I/O values) and Halt
(stops program running).

Edu.LMC includes many functionalities that can be
pedagogically interesting in this learning context: create,
open, comment, save, verify, execute and print programs.
Besides that, it includes examples organized by level of
difficulty, and a comprehensive Help Area with executable
examples for each instruction. Users can also view the
saved “Log Execution” file, receive detailed information
about Program Tracing and check or change the
Mnemonics Conversion Table.

Figure 2. edu.LMC aplication window

00 IN;asks for num1

01 BRP 03;if positive, continues

02 BR 00; if negative, asks again

03 STO 98; stores number at mailbox 98

Figure 3. The edu.LMC text file Format

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
3rd E-Learning Conference - Computer Science Education, September
7–8, 2006, Coimbra, Portugal.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

3.2 Main Functionalities
• Examples Database: is an important functionality

to help students learning lmc programming. There
are ten example programs available directly from
LMC\Programs after edu.LMC installation. Those
programs have distinct difficulty levels and its

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

196

level is indicated as a comment at the beginning of
lmc file. All files have comments on each
instruction. Those examples can be useful to help
novice users starting to understand how lmc
programming and execution work. For instance,
example on Figure 4 calculates 10 multiples of an
input number. Those multiples are between two
bounds: mailbox 99 (lower) and mailbox 98
(upper).

Figure 4. edu.LMC Editor Area with a program File

(10_multiples.lmc) to calculate the 10 multiples of a number

• Program correction: Programs written, using
edu.LMC, are verified on each instruction at a
time. Instruction mnemonics are restricted to
instruction set available trough a listbox and
parameter correction is immediate – only numbers
between 00 and 99 are accepted. But, like users
can also create their lmc programs on a text editor,
when an lmc program is opened at edu.LMC, lmc
program is placed at Editor Area and a list of
errors, Error Detection Window, is generated if
any errors are detected: wrong instruction
numbers, incorrect mnemonics or parameters,
misplaced comments. Students can then correct
those errors. If they don’t, the Load operation
won’t proceed and another (or the same) Error
Window will be present. Figure 5 has an Example
of errors detected – it includes a correction to a
missing Coffee Break (COB) instruction to end
the program - and solutions to correct it.

Figure 5. Error Detection example s and suggested solutions

to correct LMC Program

• Log Execution: usually, students find difficult to
understand the way variables’ values change. It is
possible to activate the “Log Execution” option
(available on Execution Control Area) and
generate a text file with information about
Program Execution. The default name is
LMC_log.txt but it can be changed. At Figure 6
we have a sample, only considering instruction 00
for program Test_A.lmc. The log file can’t be
directly used from edu.LMC but it can be opened
with any Text Editor.

Figure 6. Example for Log Execution File

• Program Tracing Information: This is a

complement for common Tracing Program
Execution. If we chose, on Execution Control
Area, the Trace option, a dialog box, like the one
at Figure 7, is displayed with information about
the current and the next instruction to be executed.
It asks also if we want to step to the next
instruction.

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

197

Figure 7. Program Trace Window

• Mnemonic Conversion Table: many LMC

Simulators use different instruction codes when
comparing Simulator implementation with LMC
Paradigm. Table on Figure 8 make it possible to
configure those codes or to restore them to their
(original) default values. This Mnemonic
Conversion Table is applied to correct lmc
programs in order to check if the LMC instruction
exists.

Figure 8. edu.LMC Mnemonic Conversion Table

• View Output Display: if students implement a

LMC program that has many OUTPUT
instructions, it can be useful to have an Output
Display to show the output data sequence or to
proceed like real outputs on screen. Figure 9
shows the Output sequence associated with one of
lmc programs from Examples Database –
incrementing.lmc – that asks user for boundary
limits (24 and 33 were input) and then shows all
the numbers between them.

• Print Report: the student can save and/or print
his/her programs. The Print Report content is very
similar to the Editor Window.

Figure 9. Print Report example

4. EDU.LMC SIMULATOR TESTS WITH
MI STUDENTS
Edu.LMC was tested with AC MI students during two
formal testing sessions. All students previously attended
classes about LMC Paradigm and, at least, have done LMC
Programming “on paper”. The first group was composed
by students that didn’t work previously with a LMC
Simulator and the second group knew and had already
manipulated a LMC simulator: Shockwave LMC. We gave
an “edu.LMC Session Guide” to each student and they
were supposed to explore the simulator basic options, and,
after that, implement a new LMC program (the code was
provided) using the application.
On the first half of the session, they opened an existing
.lmc file and run the program, exploring the various options
about Execution. They had to register a set of values about
calculator, mailboxes, instruction location counter,
instruction name and flags (to check if values are positive,
negative or zero). There were no significant differences
about the two student’s group behavior. On the second
half, we asked students to write the program in Figure 10,
to describe each instruction result, to save, execute and
print the program. This program is a very simple example
of using LMC instructions: it asks the user for a non zero
number, stores it in mailbox 99, asks for a second non zero
number and stores it in mailbox 98, adds the two numbers,
presents the sum result and stops execution. There is an
instruction that isn’t really necessary: 06 LDA99. Instead,
it’s possible to optimize the program, because the second
number is still in the calculator, so, it’s possible to sum it
with the number in mailbox 99 (the first input number), 06
ADD 99. With this solution there is no reason to store the
second number because it’s possible to sum it immediately.
All these optimization details were observed during this
session. They are also important in other programming
language contexts.

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

198

7. REFERENCES
[1] Yurcik, W., Osborne, H., “A Crowd of Little Man

Computers: Visual Computer Simulator Teaching Tools”,
Proceedings of the 2001 Winter Simulation Conference,
2001.

[2] Englander, I., “The Architecture of Computer Hardware and
Systems Software: an information technology approach”,
2.nd Edition, John Willey and Sons Inc., 2000.

[3] Little Man Computer. In Illinois State University: School of
Information Technology, USA, http://www.itk.ilstu.edu
/faculty/javila/lmc/ [online], created on 1998, last modified
:01-05-2000, e-mail: ljbrumb@ilstu.edu, accessed on 10-07-
2005.

Figure 10. Print Report example

In what concerns edu.LMC evaluation, the second group of
student’s considered that it was easier to write programs
with this simulator than with Shockwave LMC and
appreciated the new functionalities, namely: open and save
lmc files, print files, access to the help file and the
examples database. When we asked them the functionality
they appreciated the most and the answers were
unanimous: functionalities about files. Shockwave LMC
imposes programming in 3 digits code (no mnemonics
allowed), the programs are directly written using the
mailboxes and it isn’t possible to save or print programs.

[4] Osborne, H, Yurcik, B., “The Educational Range of Visual
Simulations of the Little Man Computer Architecture
Paradigm”, Proceedings on the 32nd ASEE/IEEE Frontiers
in Education, 2002.

[5] Yurcik, W., Vila, J., Brumbaugh, L., “An Interactive Web-
Based Simulation of a General Computer Architecture”,
IEEE International Conference on Engineering and
Computer Education (ICEDE 2000), San Paulo, Brazil,
August, 2000.

The first group didn’t focus on the same functionalities:
since they had implement LMC programs always “on
paper” they refer, as the most interesting feature, the
Execution Area that allows LMC program’s testing. Both
groups also mentioned also that edu.LMC really helped
them to understand the basic concepts of Computer
Architecture and assembly language.

[6] CAALE - The Computer Architecture and Assembly
Language Education Homepage,
http://www.sosresearch.org/caale/ [online], last modified: 12-
09-2005, accessed on 12-01-2006.

[7] WWW Computer Architecture Page – Simulators,
http://www.cs.wisc.edu/~arch/www/tools.html [online], last
modified: 04-01-2006, accessed on 10-01-2006.

[8] Cassel, L., Holliday, M., Kumar, D., Impagliazzo, J.,
Bolding, K., Pearson, M., Davies, J., Wolffe, G., Yurcik, W.,
“Distributed Expertise for Teaching Computer Organization
& Architecture”, ACM SIGCSE Bulletin, Vol. 33, n.º 2, June
2001, pp. 111-126.

5. CONCLUSIONS AND FUTURE WORK
We presented edu.LMC, a new simulation approach using

LMC Paradigm. This simulator has a clear pedagogical focus for
a specific target public – undergraduate MI students – and collects
numerous features which are difficult to find together in one
unique simulator. We tested our simulator on a learning context,
with two distinct groups, and concluded that this simulator could
help students to learn Computer Architecture concepts and
Assembly language. Students considered it an efficient way to
understand the LMC Paradigm and the related concepts. edu.LMC
can be improved by adding functionalities concerning address
modes, adding more examples to the database, implementing the
array concept, creating a more efficient way to represent the
fetch/execute cycle and, since edu.LMC is a pedagogical
simulating tool, one possibility about future work is putting
simulation on a context were students can find solutions in a
collaborative learning basis and making edu.LMC available
through an Internet Platform to support that functionality.
edu.LMC is available for download at
www.iscac.pt/~ipedrosa/LMC/edu_lmc.htm and we welcome all
feedback about it.

[9] Yurcik, W., Brumbaugh, L.”A Web-Based Little Man
Computer Simulator”, Proceedings of the 32nd ACM SIGCSE
Technical Symposium on Computer Science Education,
ACM Press: 204-208, 2001.

[10] Yehezkel, C., Yurcik, W., Pearson, M., Armstrong, D.,
“Three Simulator Tools for Teaching Computer
Architecture: EasyCPU, Little Man Computer, and
RTLSim”, ACM Journal of Educational Resources in
Computing, Vol. 1, No. 4, December 2001, Pages 60-80.

[11] Friend of Son of Little Man Computer (FoSoLMC)
http://fosolmc.lazyblue.com/fosolmc/#release [online],
accessed on 11-11-2005.

[12] Acquaintance of Friend of Son of Little Man Computer
(AoFoSoLMC),
http://fosolmc.lazyblue.com/fosolmc/aofosolmc/ [online],
accessed on 15-11-2005.

[13] dat2343/01f/notes,
http://teaching.idallen.com/dat2343/01f/notes/checkbox_files
.cgi, [online], created on 1998, last modified :17-04-2005,
accessed on 09-07-2005.

6. ACKNOWLEDGMENTS
We would like to express our gratitude to ISCAC students that
tested edu.LMC, giving precious advices, in order to turn it a
better pedagogical simulation tool. [14] Little Man Computer, http://www.herts.ac.uk/ltdu/projects/

mm5/ [online], accessed on 03-03-2006

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

http://www.itk.ilstu.edu/
http://fosolmc.lazyblue.com/fosolmc/aofosolmc/
http://teaching.idallen.com/dat2343/01f/notes/checkbox_files.cgi
http://teaching.idallen.com/dat2343/01f/notes/checkbox_files.cgi
http://www.herts.ac.uk/ltdu/projects/ mm5/
http://www.herts.ac.uk/ltdu/projects/ mm5/

199

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

	INTRODUCTION
	LMC PARADIGM
	EDU.LMC SIMULATOR
	The application
	Main Functionalities

	EDU.LMC SIMULATOR TESTS WITH MI STUDENTS
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

