
113

Teaching Artificial Intelligence Techniques
Using Multi-Agent Soccer

I.J.J. Borm
Delft University of Technology
Mekelweg 4, 2628 CD Delft,

The Netherlands

iweinb@gmail.com

L.J.M. Rothkrantz
Delft University of Technology
Mekelweg 4, 2628 CD Delft,

The Netherlands

L.J.M.Rothkrantz@ewi.tudelft.nl

ABSTRACT
This paper describes a method of teaching rule-based reasoning,
ad-hoc networks, multi-agent systems and agent technology
through multi-agent soccer. The coursework is a set of
assignments that require students to implement intelligent agents
that can control the soccer players. The players form an ad-hoc
network that is utilized for communication and cooperation.
Students have to beat the reference team to pass the assignment,
where a competition between student teams provides an extra
incentive for the students. We implemented a running version of
the system. The system was tested in a classroom environment.
The assignment, system and test results will be discussed in the
paper. The coursework presented in this paper bridges the gap
between theory and reality in a fun, motivating way.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer and Information
Science Education – computer science education..

I.2.1 [Artificial Intelligence]: Applications and Expert Systems –
games

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– coherence and coordination, intelligent agents, multi-agent
systems.

General Terms
Algorithms, Documentation, Design, Experimentation

Keywords
Agent Framework, Ad-hoc Networks, Distance Learning, Multi-
Agent Soccer, Multi-Agent Systems, Programming Assignments.

1. INTRODUCTION
Multi Agent Systems (MAS) are an increasingly popular domain
in AI. A special example of MAS are robot or embodied agents.
One of the challenges of this domain is “By the year 2050,
develop a team of fully autonomous humanoid robots that can win
against the human world soccer champion team” [4].

Researchers are looking at the high-level and low-level aspects of
building a team that can reason autonomously and cooperate with
its team mates to achieve this ambitious goal.

The threshold for starting in this domain however, is rather high.
A lot of low-level issues have to be resolved before reasoning on
a strategic level can be done. Robots are primarily concerned with
things they can determine about their environment – is this robot

friend or foe? Is that object a robot or a ball? Where am I? How
fast is the other player moving? Although (probabilistic) answers
to these questions can be given, the processing time, camera
quality and position tracking are some of the problems that harm a
proper strategic approach to a soccer team.

The coursework presented in this paper provides students with a
multi-agent soccer simulator that has all low-level functionality
preprogrammed. A simple interface for controlling players is
provided, allowing students to start immediately on a strategic
level, without being bothered by the low-level image processing
and reasoning bottleneck. There is no central authority – to better
resemble reality, and to keep the focus of the assignment on
controlling the players.

Students have to program a team of intelligent agents that control
the players. The team has to communicate and cooperate in order
to beat the reference implementation. To further stimulate
students, a competition is held. Through designing and
implementing their teams, students learn about Multi-Agent
Systems (MAS), Ad-hoc Networks, Rule-based Reasoning and
Agent Technology.

The coursework uses a Java-implemented Agent Framework
specifically designed for teaching (introductory) artificial
intelligence.

A classical approach of teaching students AI is through
(conventional) programming assignments. We designed a new
method, and expect students to be highly motivated and to learn
more.

In this paper we shall first provide the background information
about the introductory AI course to which the coursework
belongs. Then a brief overview of the simple agent framework on
which the coursework is built is given. Then the soccer simulator
is explained. The assignment forming the coursework will be
explained next. Finally, survey results and classroom experience
will be discussed

2. INTRODUCTORY COURSE ON AI
The coursework presented in this paper was used in an
introductory first-year undergraduate course on AI. Participants
are all from Media and Knowledge Technology, a variant of
Computer Science studies at Delft University of Technology. The
course started in 2001-2002 and aims to achieve the following [1]:

• Introduce basic concepts of knowledge engineering and
relevant AI techniques including search algorithms,
knowledge representation methods, rule-based
reasoning algorithms, and agent technology.

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

114

• Explain and instruct in issues related to AI
programming in general and intelligent MAS in
particular.

Rather than pursuing these goals through conventional
programming assignments, the project consists of a number of
challenging (group) assignments.

The course consists of 20 hours of lectures – followed by an oral
exam, and 80 hours of practical work.

The teachers are actively involved in supporting the students
throughout the project. Through a kick-off lecture, the
assignments are introduced. Groups are formed based on
performance in the individual assignment, creating homogeneity
in groups. Good groups are given more freedom and are
stimulated to be more creative, whereas extra guidance is given to
the groups that did not perform as well.

The teachers are always present during the lab hours, for
answering questions and monitoring the groups. Every week, a
brief group conversation with the teacher is held to monitor
progress and recognize problems within groups.

The project consists of 4 assignments; A,B,C and D.

• The first is an individual assignment where a Roshambo
agent has to be programmed that defeats our reference
agents. This assignment filters out students that lack the
programming skills required to succeed in further
assignments. Throughout the rest of the project, it is
assumed all students are capable of programming java
at a reasonable level. All further assignments are in
groups of 5-6 students.

• The second assignment focuses on rule-based reasoning.
Based on questionnaire data, the ideal group member is
found.

• The third assignment introduces students to semantic
networks. A network of the International Movie Data
Base (IMDB) is created and the ‘hero’ of Hollywood
determined.

• The last assignment, D, has always been problematic.
The goal of the assignment is originally to teach
students about MAS and provide insight in the
difficulties that are encountered when dealing with
MAS. Various approaches have been attempted, but
both software and conceptual flaws in the assignments
have so far prevented this assignment from being a
success. A new assignment was created in 2004-2005
[1]. Although perceived as enjoyable and motivating,
the artificial point distribution of the assignment caused
simple strategies to win from intelligent ones.

 Throughout the project, students become more acquainted
with the agent framework (Fleeble), programming agents in
java and working together in groups. Students also learn to
deal with increased amounts of freedom. For the first and
second assignments, the path from goal to implementation is
relatively straightforward. Students know what steps need to
be taken and implement them accordingly. In the third and
fourth assignments, a lot more freedom is given. The goal is

clearly specified, but several paths can be taken, none
necessarily much better than the other.

3. FLEEBLE AGENT FRAMEWORK
The first-year undergraduate students participating in the project
have only little experience in programming Java. To keep the
focus of the project on the assignments rather than on learning a
complex agent framework, a simple agent framework called
Fleeble was developed in previous years of the project.

Fleeble is Java-based and provides all functionality required for
the project. It allows concurrency (multi-threading), multiple
agents (and easy communication between these agents) and
namespaces. A thorough description of these (and all other)
features can be found in [2].

Namespaces simulate different computers. When loading a child
Agent, a certain name space can be given and Fleeble will lock
the Agent’s communication to this namespace. This is particularly
useful for multi-agent soccer, as it enables us to force namespaces
on player agents, such that they can only communicate with the
framework and not directly with each other. Fig. 1 shows the
Fleeble GUI, with the soccer simulator running.

A comprehensive tutorial can be found in [2]. Templates for
agents are included in the assignments, to give students a head

start. Fleeble will automatically compile agent code, so the only
requirements for working with Fleeble are an editor, Fleeble, and
Java 1.5 installed.

Figure 1. The Fleeble GUI

Because of its excellent documentation, tutorials and example
code, only basic Java knowledge is required to start working in
Fleeble.

4. MULTI-AGENT SOCCER SIMULATOR
The goal of the assignment is for students to learn about MAS,
ad-hoc networks and rule-based reasoning. To help students in
achieving these goals, while not distracting them from low-level
problems and concerns, the soccer simulator was designed (See
Fig. 2).

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

115

Teams consists of 7 players. A player on the field is a ‘Robot
Agent’ (the hardware), which is controlled by a ‘Player Agent’
(the brains). The Player Agent has a number of inputs (Listen,
See), and a number of outputs (Shout, Move).

4.1 Input / Output
Shouting can be done at any time by any agent. Agents listening
within a predefined distance (See Fig. 3) will receive the message.

A shout can include any Java Object, so it can be very valuable to
exchange information about positions and strategies of other
players. Rather than restricting shouting by allowing only a
certain number of shouts per time unit, or by setting a maximum
message size, shouting is penalized by reducing the speed of the
shouter by a certain percentage for a few seconds. This causes
students to have very diverse strategies. Some will be hesitant to

use shouting often, whereas others will take the speed penalty for
granted.

Players receive a visual update about 3 times per second, through
the See channel. This consists of a list of all Visible Objects. A
Visible Object contains position information, the name and team
of the player. The player self, and all objects within a certain
distance / angle are added to this list (See Fig 3.). This
information, and what is gathered through listening are the only
sources of input that a player has.

The position information contained in the visual updates comes in
three flavors. Absolute (screen) coordinates, relative to team
coordinates, and relative to self coordinates. The relative to team
coordinates are very useful for providing orientation – a team has
to work on both left and right sides of the field. The relative to
self coordinates make life a lot easier for students for determining
how far away objects are, whether they are on your left or right
side, and several other useful facts.

Players can move their Robot Agent by telling it to move
(Forward, Backward, Left or Right). A turn can be specified as
well (Left, Right, Straight) and a player can block or kick.
Although Player Agents are not restricted in the amount of move
requests they send, only the last one that is received before a
frame update is processed. Bumping into other players, or being
bumped into is penalized by a fixed speed reduction lasting
several seconds.

Figure 2. The Multi Agent Soccer Simulator

Since it is not possible to know beforehand the strategy of the
team you are playing against, it would be nice to have some
autonomous adaptive behavior. Therefore, an option to change the
‘brains’, the Player Agent on a Robot Agent is included. When a
team is losing with 5-0, it is probable that proceeding with the
current strategy is not going to yield better results. Changing an
offensive player to a defensive one, or vice versa, is an interesting
dimension that motivated students could explore.

4.2 Randomness
The simulator is mostly deterministic. All parameters are known
to all players, and can be used to calculate for instance where a
ball will come to a stop, how much time it will take to move to a
certain position, etc. There are only two random elements in the
game, causing every run to be different.

First, there is a random factor when kicking the ball. To prevent
lucky shots from a very large distance, and to stimulate strategic
behavior, a certain random distortion is added to every shot.

Secondly, there is “Java-induced randomness”. There are 2x7
Robot Agents, 2x7 Player Agents and a Framework Agent. All
Agents have their own thread, and thread handling in Java is not
completely deterministic. Because of this, sometimes a certain
player will get his See updated just before a frame update, and
another player after. These random variations are equally
distributed amongst both teams, and make every game unique.

Figure 3. Part of the soccer simulator. The yellow circle
defines the shouting distance, red arc is what the player sees

4.3 Team creation
A soccer team consists of 7 players, each with a Player Agent,
name, base position and an icon. The information is stored in an
XML file. The XML file can be hand written, or generated using
a visual editor (See Fig. 4).

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

116

5. MULTI AGENT SOCCER ASSIGNMENT
The assignment is formulated as follows:

Design and implement a number of Player Agents that cooperate
in order to win the game. It is only possible to pass the
assignment if the team convincingly beats the reference team. A
team consists of 7 players. A player on the field is a ‘Robot Agent’
(the hardware), which is controlled by a ‘Player Agent’ (the
brains). The Player Agent has a number of inputs (Listen, See),
and a number of outputs (Shout, Move). There is no central
authority. The user has no influence whatsoever once a game has
started. The focus of the assignment should be on cooperation and
communication. A lot of thought has to be spent on what
approach and strategies are best, and what the weak spots of
these would be.

To provide a guideline to the students, the assignment is split up
into three parts. In the first part, students have to think about a
number of predefined scenarios, and form a strategy for each. The
second part requests students to design their Player Agents, to
provide a clear picture of what their team will do. The third part is
the actual implementation of the team.

5.1 Scenarios
In the first part of the assignment, students have to describe how
their players will act in a number of scenario’s. A differentiation
may be made between types of players (i.e. a defense player will
respond different from an offense player).

Scenario’s are divided in micro (player) and macro (team)
scenarios. An example micro scenario is: ‘The ball is free’.
Students have to reason about how their agent reacts. Will it work
towards the ball, get in between the goal and the ball,
communicate to see if other players are closer to the ball? An
example macro scenario is: “Someone from your team has the
ball”. Do you try to stand in a free spot? Do you help him by
communicating position information of enemies?

A lot of decisions have to be made in this part of the assignment.
Letting students think as their player agents would, is a good

exercise for getting them to understand difficulties and tradeoffs
that have to be made.

Before being allowed to proceed to the next part of the
assignment, the teacher has to approve of the scenarios.

5.2 Design
During the design phase, students will have a good idea of what is
possible and what is not. They use the scenarios from the first part
to come up with a full description of their system. This includes
additional scenarios (the scenarios from part one only included
basic, trivial events), different players (i.e. goalkeeper, defense,
captain, offense,…) and a plan for how communication and
cooperation between these shall occur.

5.3 Implementation
The final phase deals with the actual implementation of the
agents. Considering that Fleeble and the soccer simulator are still
(relatively) new to the students, it is impossible for them to
estimate beforehand exactly how much time a certain task will
take, and whether everything will have the expected outcome.
Even for experience programmers, this is a hard task, but for
novice programmers, it is a serious problem. Even when their
design is perfect, and time constraints seem reasonable, the result
will still depend on the individual skills of the group members. It
is important to use their design as a guideline, but students will
need to learn to iteratively refine their design as the
implementation continues.

Figure 4. Interface for creating team setup XML

In this phase, students start working with rule-based reasoning.
Although during the year 2005-2006, it was neither obligatory,
nor stated in the manual, all groups used a rule-based approach to
programming their agents. The rules primarily defined the
behavior of the agents. How a rule-based approach is incorporated
in soccer agents is shown in 5.4

5.4 Reference Team
To get a passing grade, a student team has to convincingly beat
the reference team. Students do not get to see the code for the
reference team, but they can observe how it works by playing at
it.
The reference team consist of one goalkeeper agent and six
Simple Players, spread over the field. The reference team uses a
rule-based approach to reason about its environment. Every time
input arrives through See or through Listen, the list of positions of
all objects is updated. Every time a See comes in (3 times per
second), the known info is updated and a number of Boolean
values are derived. These Booleans deal with: Is the ball position
known? visible? kickable? free? in enemy goal area? near base
position? with a team player? Is there a team mate standing free?
An enemy up ahead? Is it total chaos?
The values of these Booleans are then put into a Rule base, which

reasons about the situation. For example:

IF ball_kickable AND NOT in_enemy_goal_area AND team_mate_free
THEN pass_ball

The pass_ball fact will then cause the player to kick the ball.
The success of any given strategy depends on their analysis (what
Boolean values were derived and how well they were

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

117

recognized), the Rule base, and the implementation of the actual
actions.
The reference team does not communicate at all. All players
reason autonomously about what to do.
The keeper will try to stay between the goal and the ball. It will
try to take the ball when it is free, and when it has the ball, shoot
it into the field. When it doesn’t see the ball, it will stay on its
base position and scout for it.
The Simple Player will also scout for the ball when it doesn’t see
it. When the ball is visible and it is no total chaos, it will hunt for
the ball. When a team mate has the ball, it will try to stand in a
free spot. When it has the ball, it will try to avoid enemies and
attack over the flank at which it was positioned (a left back will
attack over left flank), moving directly towards the goal when it is
getting close. When a ball was recently visible, but isn’t anymore,
it will try to find out where it is by turning and moving towards it.
The resulting team was neither very smart nor very stupid. It was
a challenge for students to convincingly beat the reference team.

6. RESULTS
Evaluation of the assignment occurred through classroom
observations and through a survey. After a discussion of the
results coming from these, a comparison is made with previous
assignments.

6.1 Classroom Results
The expected result was that students would find the assignment
enjoyable, motivating and very educative. Based on classroom
observations and several conversations with participating
students, this is also the actual result. A few things were
remarkable, however.
First of all, there were hardly any questions about the assignment
all. With previous assignments, and especially with the
introduction of new assignments, there have always been loads of
questions. The only occasion the teacher was really necessary was
for approving scenarios and designs. This leads to believe that the
assignment is very well suitable for distance learning.
Second of all, it was remarkable that a wide variety of approaches
were attempted. The creativity and skill of individual group
members have been put to good use in designing and
implementing the agents, and gave diverse results.
A third remarkable observation was that several groups gave the
players the group members names. Rather than referring to a
certain player as ‘Right back’, or ‘Defense Player’ – as expected,
they felt affinity for their players. It is also interesting to note that
many groups were so enthusiastic about the assignment that they
worked on the implementation far beyond the lab hours. Even
after knowing their team was good enough to beat the reference
implementation, many groups made a big effort to try and win the
competition between the groups.
Many students were pleased with their implementations, but
regretted to see that a lot of their hard work had turned out useless
as it was not used. Getting a complicated strategy to work may
look trivial on paper, students gained first-hand experience in the
hard reality that it isn’t.
Another remarkable result is the results of the tournament. Since
groups were formed based on homogeneity in performance, the

expected result would be to have group 1 as champions, group 2
as number 2, etc. Rather than this happening, groups 4,3 and 5
(out of 5 groups) finished 1st, 2nd and 3rd. Although group 1 could
have won, their approach was too complicated, causing it not to
work. Most groups encountered similar problems, but the urge to
win the competition caused some groups to invest a lot more time.
Finally, at the competition between the groups, it was remarkable
to see how enthusiastic students were about winning, and how
much they enjoyed seeing their strategies at work.
Regarding the educational goals for the assignment, these were
achieved through all parts of the assignment. Students gained a lot
of insight in the problem of dealing with decentralized control in
ad-hoc networks through the scenarios and design. Through
implementing the players, most groups found that complexity
kills. A clever combination of rather simple methods yields a
better result than a poorly implemented ingenious approach.
Students used a Rule-based approach in their implementations,
but did so without using separate rule base software. Separating
the rules from the code would force students to program in a
better organized manner. Changing the assignment to explicitly
include this element would probably help students a lot during the
implementation.

6.2 Survey Results
After the competition, a survey was distributed among the
students to get their opinion of the assignment, the manual and the
software. It was remarkable to see several questionnaires with a
(very) positive rating, and a lot of useful feedback in the remarks
section on the one hand, and several very negative results without
any remarks.
Because the survey is anonymous, it is not possible to know
which students gave what kind of feedback, but a plausible
explanation for the result is that within groups, there are two
subgroups: Those that did a large share of the programming work,
worked with the simulator and read the manual, and those that
prepared the group’s presentation, wrote reports, helped the
programmers and took part in the design process. The first group
generally has a positive opinion (this is in agreement with
classroom observations), whereas the second group does not.
One of the questions was “Describe in 5 keywords the things that
you learning from the assignment:”
Some common answers were: “Teamwork, planning, ad-hoc
networks, problem solving, cooperation (software), how to
implement a (high level) strategy ”
45% of the students indicated that they would like to do more
assignments with Multi-Agent Soccer.
80% (strongly) agreed that they learned more from this
assignment than a ‘conventional’ practical that asks to implement
a certain algorithm.
75% felt that the assignment gave them insight in the problems
you encounter in environments without any centralized control,
specifically ad-hoc networks.
85% (strongly) agreed that the assignment was challenging.
80% liked the assignment (very much).
85% liked the competitive element (very much)

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

118

65% felt that they would have been able to finish the assignment
without the teacher’s help
In the remarks, the most commonly heard complaint was the lack
of time. Students only had 3 weeks to finish the entire assignment.
Some even proposed to remove assignment B and enlarge this
assignment. Another negative remark was the coordinates
(relative to team, relative to self) were not explained properly in
the manual.

6.3 Comparison
In the past two years, other assignments were given to the
students with similar educational goals [1]. It is not possible to
compare survey results, as the questions and the way they were
posed differ too much. It is possible however to compare the
classroom observations.
Two years ago, the assignment was flawed both conceptually and
by software. To combat these problems, the Smurf assignment
came into existence [1]. Although the software was working
reasonably well, the artificial point distribution system caused
trivial solutions to beat highly intelligent ones. Because of this, no
‘good’ implementation could be made.
With the lessons learned from previous assignments, the soccer
assignment tries to stick close to a realistic environment. Speed
penalties are given for communication, rather than an artificial
point distribution. Because the assignment was closer to reality,
students could identify better with their agents and this in term
further increased their motivation.
“It actually works” is a common utterance by students that
participated in the course in previous years, after having seen the
soccer assignment.

7. CONCLUSIONS
In this paper we have described a method of teaching Ad-hoc
Networks, Rule-based Reasoning, Multi Agent Systems and
Agent Technology using a multi agent soccer system. We
implemented a running version of the soccer system and tested
the assignment in a classroom environment.
We gathered results through anonymous questionnaires and
classroom observations. Both methods show that students enjoyed
the assignment and felt motivated by it. The educational goals
were achieved, and many group work related lessons were
learned.
Since the assignment only focuses on high-level strategic
decisions, rather than the low-level issues currently being looked
at in the robotic soccer field, students had more freedom for
creative, original solutions. Students learned while implementing

that complexity kills. A clever combination between simple
methods yields far better results.
Adding the competitive element to the assignment gave students
extra incentive for hard work, and the competitive element was
greatly appreciated by the students.

8. FUTURE WORK
The assignment is a good challenge for first-year undergraduate
computer science students. Due to the level of these students and
the short period of time allocated for the assignment, the resulting
teams were not spectacular.
It would be interesting to extend the system with various other
(more difficult) reference implementations, alter the assignment to
defeat these teams and give it to graduate students.
Adding a self-learning reference implementation would add an
interesting dimension to the analysis phase of the assignment, as
well as provide a real challenge for graduate students.
Most students felt that they could have done the assignment
without the help of the teacher. This leads to believe that a
modified version of the assignment would be particularly useful
for distance learning.

9. ACKNOWLEDGMENTS
The authors would like to thank all MKT undergraduates who
evaluated the course in 2005-2006. Special thanks go to Cristiano
Betta, Ilyaz Nasrullah and Paul van den Haak for their help in
managing the course in 2005-2006.

10. REFERENCES
[1] Pantic, M.; Zwitserloot, R.; Grootjans, R.-J., "Teaching ad-

hoc networks using a simple agent framework," Information
Technology Based Higher Education and Training, 2005.
ITHET 2005. 6th International Conference on , vol., no.pp.
S2A/6- S2A11, 7-9 July 2005

[2] http://www.fleeble.net/ (last visited: June 23, 2006)
[3] Pantic, M., Grootjans, R.J., Zwitserloot, R., “Fleeble Agent

Framework for teaching an introductory course in AI”, Proc
Int’l Conf. Cognition and Exploratory Learning in Digital
Age, pp. 525-530, Lisbon, Portugal, 2004.

[4] http://www.robocup.org/ (last visited: June 23, 2006)

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

http://www.fleeble.net/
http://www.robocup.org/

	INTRODUCTION
	INTRODUCTORY COURSE ON AI
	FLEEBLE AGENT FRAMEWORK
	MULTI-AGENT SOCCER SIMULATOR
	Input / Output
	Randomness
	Team creation

	MULTI AGENT SOCCER ASSIGNMENT
	Scenarios
	Design
	Implementation
	Reference Team

	RESULTS
	Classroom Results
	Survey Results
	Comparison

	CONCLUSIONS
	FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

