
101

A Web-based approach to support initial algorithmic
procedural programming learning

Marcelino, M. J. Dobrodzhaliev, Y. Tosheva, I.
University of Coimbra

Dep. Engª Informática, Polo II
3030-290 Coimbra - Portugal

+351 239 790067

University of Rousse
Dep. of Computer Systems

7017 Rousse, Bulgaria
+359898921763

University of Rousse
Dep. of Computer Systems

7017 Rousse, Bulgaria
+359898584619

zemar@dei.uc.pt reni_20_kzl@mail.bg Janysoft@mail.bg

Gomes, A. Mendes, A. J.
Polytechnic Institute of Coimbra

Dep. Engª Informática e Sistemas
3030-199 Coimbra - Portugal

+351 239 790 350

University of Coimbra
Dep. Engª Informática, Polo II
3030-290 Coimbra - Portugal

+351 239 790000

anabela@isec.pt toze@dei.uc.pt

ABSTRACT
Student difficulties in programming learning are not easily
overcome, especially in initial learning stages. To minimize these
difficulties, it is important that students have an active role in
their learning process. The availability of interactive tools that can
support students’ work, both in classes and autonomously, can
have a positive impact in their learning performance. In this paper
we describe SICAS-W, a Web-based system to support students
in initial algorithmic procedural programming learning. With this
environment students can build, simulate, test and compare
algorithms for proposed problems and submit and test their
solutions online.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education - Computer science education.

General Terms
Algorithms, Languages.

Keywords
Algorithmic learning, problem-solving techniques, programming
learning.

1. INTRODUCTION
Programming learning is not easy for beginners and brings them a
lot of difficulties, commonly reported in many research studies
[1-2]. This is particularly important in early learning stages, as
many students fail to be approved in initial programming courses,
leading also to difficulties in other courses that expect them to
have already developed good programming skills. This situation
can degrade student confidence and self motivation and in some
cases lead to abandon.

Mainly, to learn programming is to learn another way to solve
problems (many times previously known from other disciplines)

Students must develop capacities like abstraction, generalization,
critical thinking, transfer, etc., and that is not simple to many
freshmen.

Over the years, several approaches and software tools have been
developed to support programming learning. Antunes in [3]
overviews several of these approaches quite comprehensively.
They include:

• Simpler Programming Languages or mini-languages,

• Controlled development environments,

• Micro-worlds,

• Tools to test solutions,

• Tools to algorithm, or program, animation and
simulation,

• Online courses, e-books, dedicated sites.

Examples of the first category are BASIC language (designed to
be simpler to use than traditional general-purpose languages) and
MiniJava (a mini-language or a subset of Java) [4-5].

Controlled development environments are simpler than
professional IDEs and designed with educational purposes.
Available options are limited to reduce the usual complexity of
their professional counterparts. An example is BlueJ [6].

Micro-worlds are environments where the user has to ask some
character to perform specific tasks in a simulated world, usually
more concrete and close to the student context than other typical
programming environment. Karel the Robot is a well-known
example of this approach [7].

Tools to test student solutions to problems usually compare the
results of a student program with several provided input/output
datasets. Among them we can mention WebToTeach [8] and ELP
[9], systems developed for the Web.

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

mailto:reni_20_kzl@mail.bg
mailto:reni_20_kzl@mail.bg

102

In SICAS, algorithm design is supported by an iconic
environment where the student builds a flowchart based on typical
graphical symbols that represents the solution (see Figure 1 for an
example). Flowcharts were chosen to express algorithms, instead
of pseudo-code, because many studies reinforce the idea that they
are more appellative, facilitate understanding, and are simpler and
probably less prone to errors than pseudo-code [14].

Among tools to algorithm or program animation and simulation
we can distinguish between specific tools, that only allow the
animation of predefined examples (usually built by the teacher),
and more general tools, that allow the animation and simulation of
any solution (algorithm or program) developed by the student. In
the first subgroup we can mention JHAVÉ [10] and in the second
JELIOT [11] and SICAS [12-13].

Algorithms developed with SICAS can include assignments,
input/output, repetition and selection instructions. They can use
numeric and string variables. Functions can also be defined and
used. These elements can be introduced in a flowchart by clicking
(in the toolbar icons) and pointing (in the design area). When that
happens, a dialog box automatically opens asking the student to
specify the element details (e.g. the condition in a selection). This
option helps students to avoid common novice programmer
syntax errors. Lines connecting components are automatically
inserted, avoiding inconsistencies in the flowchart. The
environment also includes the ability to delete, modify or copy
any component.

We have been using SICAS for some years to support the initial
learning stages in our procedural programming course at the
Informatics Engineering Department of the University of
Coimbra. Although we believe that SICAS has been useful to
many of our students during classes, it was not used by many of
them in their autonomous work. Several reasons may be pointed
for this, but mostly students say they did not use it because they
did not install it in their computers and they did not have
sufficient problems to solve. Also teachers point the fact that
SICAS does not give them information about student’s
performance and difficulties, making it unfeasible for them to
follow students’ work.

Any algorithm created with SICAS is automatically translated to
pseudo-code, C and JAVA code. These alternatives show that a
well designed algorithm can be easily translated into several
programming languages and that the most important factor in
algorithm design is its conception, not the programming language
in which it is coded.

2. A WEB-BASED SYSTEM TO SUPPORT
INITIAL PROGRAMMING LEARNING
To minimize the above problems we decided to develop a Web
based version of SICAS, that we called SICAS-W. This version
introduces four main changes relatively to the standalone version:

After creating an algorithm, it is possible to see its animated
simulation. The student can control the speed at which the
simulation progresses (step-by-step, slow or fast), pause the
simulation and go back to repeat any part of the execution. This
allows a deeper analysis of available data and/or a discussion with
the teacher or other learners.

• Availability,

• Diversified sets of problems for the students to solve
(organized by difficulty level),

• Information about student performance and

• Algorithm validation.
2.2 SICAS-W There is an extra advantage, since the same SICAS-W installation

can be shared by several teachers, even from different institutions,
so that each one can contribute with a small set of problems to a
bigger database. This allows the students to have a larger number
of problems to solve without imposing a heavy work on the
teachers.

SICAS-W allows two types of registered users:

• students and

• teachers.

Of course, to have access to all the environment functionalities
both students and teachers must have an account and must login. Because SICAS-W is based on SICAS, before describing the

system main characteristics, we will start, in the next section, by
describing SICAS standalone main features. A main job for the teacher in this system is to provide problems

for students to solve. A teacher can insert, delete and update
problems in the environment and also monitor the students’
evolution and the students’ global response to problems (if many
students are able to solve a particular problem, or not, etc.).

2.1 SICAS standalone
SICAS was designed to support learning of basic procedural
programming concepts, such as selection and repetition. It is
language independent and oriented to the design and
implementation of algorithms. Using SICAS students are
encouraged to develop their capacities through problem solving.
They can create solutions to problems, simulate them and see if
they work as expected. The simulator can be used to detect and
correct errors, but also to look for alternative ways to solve the
problems and to compare them. SICAS supports a constructivist
approach to learning, as each student assumes an active role,
learning at his own pace and progressively constructing his own
knowledge.

As we can see in Figure 1, the main page of the system is
organized in two frames or sections.

In the left frame, there is a menu of options. After login, the menu
changes accordingly to the type of user that has logged in.

In the right frame what appears depends also on the option that
has been selected. If it is a student and he has selected a problem
to solve, the Web version of SICAS appears (see Figure 1).

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

103

Figure 1. Main page of SICAS-W in student mode showing a problem to calculate the factorial of a number.

If a set of problem test data (inputs and outputs) was provided by
the teacher, the student can compare his solution with the
teacher’s and validate it. This is particularly useful for special
cases (e.g. invalid data or data that will likely produce erroneous
situations), since many students tend to get satisfied if their
solutions work for the average case, without caring to see if they
work in any case.

Problems are organized by level of difficulty. At present, there are
three levels of difficulty:

• Easy,

• Medium and

• Hard.

In each level there are several problems that can be solved. Before
selecting a specific problem the user has to select the level he
wants to work.

After selecting and solving a problem students can submit the
final solution to the system. The system them automatically
analyses the solution by testing it against a set of case tests
introduced by the teacher and informs the student of the result.
For the moment an algorithm can only pass or fail such a test. If it
passes it is probably rightly designed. If it fails it must have at
least some type of error, but the system does not give the student
any information about it. However, if a teacher has not provided
the test data set the algorithm can not be tested. In that case the
system will inform the student with an adequate message (in the
“Solution test” area). Still, we encourage every teacher to do it as
it can be quite beneficial for a student to have some feedback on
the quality of his solution.

When a problem is selected, the problem formulation appears in
the Problem area and the student has at his disposal a tool where
he can build an algorithm that solves the problem (see Figure 1
for an example).

After, a student can simulate the algorithm, with several control
speeds, and watch the result of his solution (see Figure 2 for the
final result of the simulation of the previous example).

A problem has a formulation (a text), one or more algorithms that
solve it and, eventually, some data test sets. The fact that a
problem can be solved using several algorithms caters for
different styles and forms of understanding, allowing the student
to compare them and find out which resolution is more adequate
for a given problem.

This idea of automatic assessment of programs developed by
students is not completely new, but usually it is used in more
advanced stages of programming learning and not in the very
beginning with algorithms and their animation [15-17].

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

104

All the information of the specified level, in this case medium
level problems, appears. We can observe each problem number,
how many times each has been tried, successfully solved and
attempted (unsuccessfully tried).

Figure 2. SICAS-W in student mode showing the final result of the factorial problem.

One important feature of both SICAS and SICAS-W is that the
interface language can be changed easily as the tools were
designed in such a way that they are adaptable to the user
language. This includes also pseudo-code and problem
formulation that should be also in the user mother language. As
one of the tool intentions is to broad its audience and share
resources, this is a very important aspect. By default everything
shown to the user is in his language, but if he changes the
language the whole system adapts, including the problem text (if
provided when introduced into the system by the teacher).

In what concerns tools for the teacher, the system has some
statistical tools too to monitor/evaluate students’ performance. It
is possible to obtain from the database information about:

• a particular student,

• a particular problem,
Fro
inst
wer
an
clar
Lik

• a particular level of problems,

• from a certain date onwards,

• for solved problems of a certain level,

• for unsolved problems of a certain level.
All
Thi
pro

In the next table an example of a query done (by level) is shown.

3rd E-Learning Conference
Table 1. Result of a query made by a teacher to the
system by problem level.

m this information we can extract several relevant data. For
ance, problems number 22 and 33 seems problematic as they
e tried more times without success than with success. This is
easy way to identify difficult problems that may need an extra
ification or reformulation, including level reclassification, etc.
ewise, information can be obtained on the other items.

 the information used in the system is stored in a database.
s database deals with student and teacher accounts, proposed
blems, solved problems, students’ performance, etc.

Coimbra, Portugal, 7 – 8 September 2006

105

[3] Antunes, R. Ambiente de apoio à aprendizgem de
programação Web utilizando PHP. Master Thesis,
University of Coimbra, 2005.

The technologies and languages used to build the site and the
supporting database are HTML, the Java programming language,
MySQL and PHP. These were chosen essentially because they are
free technologies and languages. [4] Kurtz, T. History of Programming Languages. Academic

Press, New York, 1981.
3. CONCLUSIONS AND FUTURE WORK [5] Roberts, E. An overview of MiniJava. In Proceedings of the

32nd SIGCSE Technical Symposium on Computer Science
Education (SIGCSE’01) (Charlotte, USA, February, 2001),
1-5.

In this paper we described a Web-based system to support initial
procedural programming students’ learning using algorithms as
the first ‘programming language’. Although the algorithms are
expressed using flowcharts, they can be visualized as pseudo-
code, Java code or C++ code. This allows us to use the system not
only in the initial stage of learning, but also at a later stage, as a
student can devise an algorithm first with a flowchart and ask the
system to convert it automatically to one of these languages in
order to run it in his current IDE.

[6] Kolling, M., Quig, B., Patterson, A. and Rosenberg, J. The
BlueJ system and its pedagogy. Journal of Computing
Science Education, Special Issue of Learning and Teaching
Object Technology, 12, 4 (2003), 249-268.

[7] Pattis, R. Karel the Robot: A Gentle Introduction t the Art of
Programming. John Wiley & Sons, 1981. The system works in two modes, one for teachers, to provide

problems and monitor students’ work, and another for students to
design, simulate and automatically test their solutions to selected
or proposed problems in the form of computer algorithms.

[8] Arnow, D. and Barshay, O. WebToTeach: An Interactive
Focused Programming Exercise System. In Proceedings of
the 29th ASEE/IEEE Frontiers in Education Conference (San
Juan, Puerto Rico, November, 1999), 39-44.

Soon it will be finished in order to make some preliminary
usability tests with a restricted number of users (teachers and
students), so that we can use it in a broader context in the next
academic year to support the discipline of “Princípios de
Programação Procedimental” (Principles of Procedural
Programming) of the Informatics Engineering and
Communications and Multimedia Degrees of the University of
Coimbra. During this course we will conduct a more rigorous
evaluation study where we will observe several students using the
tool, pass a questionnaire and interview some of them in the end.

[9] Truong, N., Bancroft, P. and Roe, P. A web based
environment for learning to program. In Proceedings of the
26th Australasian Computer Science Conference on Research
and Practice in Information Technology CRIPTS’03
(Adelaide, Australia, 2003), 255-264.

[10] Naps, T., Eagan, J. and Norton, L. JHAVÉ – An
Environment to Actively Engage Students in Web-based
Algorithm Visualizations. In Proceedings of the 31st
SIGCSE Technical Symposium on Computer Science
Education, 2000. However, we can say that for the student SICAS-W will offer:

[11] Ben-Ari, M., Myller, N., Sutinen, E., Tarhio, J. Perspectives
on Program Animation with Jeliot. Lecture Notes in
Computer Science, 2269 (2002), Springer-Verlag, 31-45.

• An auto-testing mechanism that can enhance his own
conscience about his learning,

[12] Gomes, A. and Mendes, A. A animação na aprendizagem de
conceitos básicos de programação, Revista de Enseñanza y
Tecnología, 13 (1999), 22-32.

• feedback about errors made,

• a challenge when trying to reach higher proficiency
levels,

[13] Rebelo, B. Marcelino, M. and Mendes, A. Evaluation and
Utilization of SICAS - A System to Support Algorithm
Learning. In Proceedings of the 8th IASTED International
Conference on Computers and Advanced Technology in
Education CATE 2005 (Aruba, August, 2005), 153-158.

• a healthy competition among the class or classes and
courses involved.

For the teachers it can offer an effective way to:

• provide more problems to students, [14] Scanlan, D. Structured Flowcharts Outperform Pseudocode:
An Experimental Comparison, IEEE Software, 6, 5 (1989),
28-36.

• know their students evolution,

• identify students’ difficulties, [15] Wu, S., Tsai, S. and Yang, P. JAVALAB – A Java Tutorial
and Programming Laboratory System. In Proceedings of
Exploring Innovation in Education and Research, Taiwan,
2005.

• improve student support,

• share experiences with other teachers.

[16] Foubister, S., Michaelson, G. and Tomes, N. Automatic
assessment of elementary standard programs using Ceilidh,
Journal of Computer Assisted Learning, 13 81997) 99-108.

4. REFERENCES
[1] Milne, I. and Rowe, G. Difficulties in Learning and teaching

programming – views of students and tutors. Education and
Information Technologies, 7, 1 (2002), 55-66. [17] Korhonen, A., Malmi, L., Nikander, J. and Tenhunen, P.

Interaction and Feedback in Automatically Assessed
Algorithm Simulation Exercises. Journal of Information
Technology Education, 2 (2003), 241-255.

[2] Johnson, D. Algorithmics and programming in the school
mathematics curriculum: support is waning – is there still a
case to be made? Education and Information Technologies,
5, 3 (2000), 201-214.

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

106

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

	INTRODUCTION
	A WEB-BASED SYSTEM TO SUPPORT INITIAL PROGRAMMING LEARNING
	SICAS standalone
	SICAS-W

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

