
107

ProGuide: A Dialogue-Based Tool To Support Initial
Programming Learning

Cristiana Areias
Polytechnic Institute of Coimbra

Coimbra Superior Institute of Engineering
Dep. Informatics and Systems Engineering

3030-199 Coimbra - Portugal
+351 239 790 350

cris@isec.pt

António Mendes
University of Coimbra

Dep. Informatics Engineering
3030-290 Coimbra - Portugal

+351 239 790000

toze@dei.uc.pt

ABSTRACT
In this paper, we describe a new tool, ProGuide, designed to
support some students in their initial programming learning. It is
particularly suited to students that show deeper difficulties to
create algorithms and programs, and need a strong and more
detailed support to overcome their limitations.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education - Computer science education.

General Terms
Algorithms, Languages.

Keywords
Algorithmic learning, problem-solving techniques, programming
learning.

1. INTRODUCTION
Computer programming learning is difficult and requires hard
work from students. They need to develop several competences to
be able to program correctly. Novice students must get acquainted
with the syntax and semantics of programming constructs and,
more difficult, use that constructs to create programs. This implies
the development of competences in several areas like abstraction,
generalization, transfer and critical thinking, among others [1].
This is difficult for many students and for a teacher it is common
to face situations where a student can’t even start a solution to a
simple programming problem, even though they usually know
and understand basic programming constructs. Like [2] we
believe that the real problem is “putting all pieces together”
composing and coordinating components of a program.
Animation based simulation has been proposed as a way to reduce
student’s difficulties. It can make concrete and visual program’s
dynamics and support practical work at the student own learning
rhythm. It can be argued that animated views can help students in
three central learning activities: Understand programs; Evaluate
existing programs; Develop new programs [3]. This last activity is
the most important and also the most difficult. Many students can
understand programs previously developed by the teacher or other
students, but they fail when they have to develop a program
themselves to solve some problem, even if it is similar to the one
they understood.

Three approaches have been proposed to make visualizations
more helpful, engaging visualization, explanatory visualization
and adaptive visualization [4]. Engaging visualization stresses the
importance of student involvement in learning. This means that
students must have an active role, instead of just seeing teacher
prepared animations. Explanatory visualization proponents argue
that many times students fail to understand what they are seeing.
They defend that visual representations should be augmented with
natural language explanations that can help student
understanding. Adaptive visualization consists on adapting the
level of detail of visual representations to the difficulties the
underlying concepts pose to each student.
We have been working mostly in engaging visualization, as we
also believe learning is more effective when students assume an
active role. So, it is important that the students can see how their
solutions work and compare with how they thought they would
work. This process should lead to error detection, correction and,
hence, learning. These activities are central in programming
learning, since students can reach a higher competence and
confidence level after being able to have programs running
correctly. This is very important, since after a first wrong attempt
many students just give up or try to find a teacher or a colleague
that shows them a solution. To support this type of activities we
developed tools like SICAS [1] and OOP-Anim [5].
In our teaching experience we have found many novice
programming students that after some initial teacher support can
progress in their learning and develop autonomy in their work.
However, others show deeper difficulties and need constant
support to solve basic problems. This is almost impossible due to
the large number of students in our courses and the limited
number of available teaching staff. In that context, we developed
and present in this paper a new environment, called ProGuide,
which tries to support weaker novice students to acquire basic
programming competences.

2. ProGuide ENVIRONMENT
ProGuide main objective is to help reduce the difficulty many
students show to propose solutions, even incomplete or wrong, to
basic programming problems. It has structures to store
information about problems and uses that information to interact
with a student when a particular problem is proposed to him/her.
This interaction tries to help students to develop a correct solution
to the problem.
In ProGuide students express their solutions on a flowchart based
tool directly inspired in SICAS. It presents features that allow the
student to create algorithms and simulate them to see if they work

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

108

as expected. It is also possible to automatically generate Java, C
and pseudo code correspondent to the flowchart created by the
student. The main problem with this approach is that weaker
students don’t take advantage of it, since they can’t develop a first
solution that can be simulated, corrected and improved. ProGuide
new features try to support students during algorithm
development, so that they can take advantage of the simulation
tool.
ProGuide has a small collection of basic exercises to propose to
students. Although we have plans to later include a specific tool
to support teachers if they want to include new problems,
currently the only possibility for the teacher is to specify the
problem and associated information in XML. When a new
problem is created its author must indicate its description, but also
a solution plan, its goals and a dialogue plan. The solution plan
includes the steps the student should follow to solve the problem
(it is possible to have alternative plans). This information is
necessary to validate student’s actions. Goals are partial
objectives that are included in the solution plan. They can be
declared autonomously so that they can be reused in several
problems. Finally, the dialogue plan includes the steps the
dialogue should follow during the interaction with the students.
The architecture of ProGuide is presented in Figure 1. The
environment has three main modules. The first manages natural
language knowledge to be used in dialogues with students. The
second module has information provided by the teacher about
partial steps and strategies to develop a particular algorithm and
the dialogue plan. The third module follows student’s actions, so
that the tool can decide when to initiate a dialogue with the
student and the type of interaction that is more adequate
depending on the resolution stage. All modules work together to
create a useful dialogue with students, trying to encourage them
and providing hints so that they can reach a correct solution to the
problem.
In the figure the gray background represents ProGuide interface
and the other components ProGuide engines. The arrows
represent the data flow between the environment components.

Figure 1 - ProGuide Architecture

ProGuide interface has three main areas, as shown in figure 2.
When ProGuide is called the student must select a problem to
solve. It is presented in the top right area. The tutoring (or
communication) area (bottom right) starts presenting a global

question to establish the dialogue with the student. The interface
left side is the solution area. Here the student can create, simulate
and improve solutions to the problem. As mentioned before this is
done using a flowchart approach.
Simplicity was a goal to us. It is important that students do not
spend significant time struggling with the environment, but
instead give attention and time to their programming learning
tasks.

2.1 Editor Area
The editor area is based on SICAS, a previously developed
environment that has functionalities that we consider useful in an
early learning stage:
Algorithm design is supported by an iconic environment, where
the student can build flowcharts to represent them. This option
was based on studies that recommend this form of representation,
as it is more appellative, facilitates understanding, and is simpler
and probably less prone to errors than pseudo-code [6]. Also,
research has shown that a graphical [7] or iconic interfaces [8] can
be more suitable for program construction than textual interfaces.
Expressions use syntax similar to C and JAVA, because the
environment potential users will probably program, at a later
stage, is one of these languages. However, syntactic details are
minimized, so that the students can concentrate completely in
algorithm development.
As the environment objective is to support initial learning, the
instructions that can be used in algorithm development are
limited:

• Input/Output elements to read, write the value of a variable
or expression

• Repetition element, creates a loop that repeats the execution
of some action

• Selection element to choose between two sets of actions that
may be executed

• Variables element to create, modify or delete variables.
Any of these components can be specified through the use of
simple dialogue boxes where student must insert each instruction
details (for example the condition in a selection instruction). This
option minimizes the necessary syntactic knowledge, allowing
students to concentrate in algorithm design.

Figure 2 - ProGuide Main Interface

Natural
Language

Engine

Dialogue and Solution

Plan Engine

Student Actions
Control
 Engine

Portuguese
Language

Knowledge

Communication

Simulator
Editor Pseudo Code

Notes

 Statement

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

109

Students can simulate their solution through flowchart animation.
They can see if it works as expected and, if necessary correct and
improve it. Animation can be done in step-by-step mode or
quickly, and can be stopped or paused whenever the student
wants. During the simulation students can observe the algorithm
output and the variable values.

2.2 Tutoring/Communication Area
Many educators would agree that the most effective form of
teaching is through one-on-one interactions with students [9]. So,
it is not surprising that an effective way to teach programming is
to give students support in their reasoning and immediate
feedback on the programs they create. That is also ProGuide main
objective. We decided to use a subset of natural language to
establish communication with the student, since we believe that
other possible options would difficult communication at this early
learning stage.
Natural language processing is complex and difficult. However, to
reach our objectives we need only a small subset of the
Portuguese language. There is no need to support very
complicated statements.
ProGuide natural language engine was inspired by the A.L.I.C.E.
project [10]. It uses AIML (Artificial Intelligence Markup
Language) language, a XML-compliant. AIML supports the
description of classes of objects and partly of program behavior.
The objects are organized in topics and categories with relevant
information. A category is not more that a standard answer.
Natural language ProGuide engine starts filtering the input and
converting it to a generic format. To do this it transforms the
phrase, deleting some pronouns and finding synonymous to put it
in a generic form that can be used in the next steps. Then, like
A.L.I.C.E, we use XML files to validate the knowledge and
categorize it for the dialogue. The knowledge base includes a lot
of category elements. Figure 3 shows one of them:

E
is
re
an
ex
re
T
en
ca
so
na
na

When ProGuide can’t understand a student input, it answers: “I’m
sorry but I did not understand what you said.” or “Can you repeat
with others words?”. When the dialogue and solution plan engine
waits for some category and the student answers differently the
reaction is to say “We are not in the same context” or similar.
Some dialogue steps have associated timeouts, that may trigger
one of the following ProGuide possible reactions:

 Repeat the question;
 Say one of the following expressions “Are you there?”

or “If you don’t know you can ask for help” or “You
don’t answer?”, and so on;

 Or, present the answer and go to the next step.

2.3 Example
In this section we will present a ProGuide utilization example. We
will use the problem “Compute and display the average of N
values”. The problem has an associated plan that should be
followed. It includes five goals that the student must achieve:

 Understand how to compute an average;
 how to get the values
 how to do a loop
 how to do a sum
 how to print a value

Each goal can be simple or have its own internal plan. All goals
must be reached during the dialogue and in parallel the algorithm
solution must be constructed.
In the beginning of a session, a general question establishes the
interaction between ProGuide and the student. Figure 4 presents a
portion of a possible dialogue between ProGuide and a student. It
was translated to English, since ProGuide currently works only in
Portuguese.

Tutor: Do you know how to compute an average?
Student: Yes
Tutor: Ok! So, let’s go to solve that problem.
Which data do you need to receive from the user to solve
that problem?
Student: The values
Tutor: Very good! You need the values to compute the
average.

3

<element category="LER_UTILIZADOR">

 <standard>OBTER UTILIZADOR _*</standard>

 <answer>

 <selement>LER<item/></selement>

 </answer>
Figure 3 - ProGuide category element

ach element has a standard and an answer element. The standard
 the phrase that can have some special elements, like _* that
presents the rest of the phrase. The answer can be null or can be
other phrase that the engine must select recursively. In this
ample, it will select the element LER and the item refers to the
st of the phrase, that is, the same like _*.
he category is then sent to the dialogue and to the solution plan
gine that guides the next dialogue step. There is an especial
tegory, designated as _DATA that informs the dialogue and
lution plan engine that the next data doesn’t need to go to the
tural language engine. For example, this happens to get variable
mes.

Figure 4 - ProGuide dialogue with the student

How many?
Student:5
Tutor: No, no… I suggest that you read the problem again.
Student: N
Tutor: And how can you do that?
Student: Ask to the user
Tutor:Good! And which element you need to put in the
editor to do that? An input/output? A loop? Or?
(Timeout)

Tutor: Maybe an input element ?

rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

110

ProGuide allows animated algorithm simulation. The student can
see how her/his solution works. Figure 5 shows the simulation of
a solution to the “average” problem. The element in execution is
highlighted and it is possible to view how the variables’ values
change during execution.

Figure 5 - Algorithm Simulation

During the dialogue the student can ask for more information
about some concept that she/he wants to use, but doesn’t know
how. If included in the dialogue plan, ProGuide can also suggest
that the student consults this extra information (for example if
during the dialogue it is established that it is necessary some
construct and the student says she/he doesn’t know anything
about it). Figure 6 shows a situation where an help about
repetition structures had been asked.

Figure 6 – Help about repetitions

If included in the dialogue plan, when the student shows many
difficulties to solve the proposed problem, ProGuide can also
suggest that the student studies a solution to a similar problem, so
that she/he may try to transfer that knowledge to the current
problem. This example solution is given as a commented
flowchart, as can be seen in figure 7. In this case the example is
about summing a set of numbers, which is a component of the
“average” problem. The solution is commented on the left side.

Figure 6 – Solution to an example problem

3. CONCLUSION
Programming is essentially a problem solving activity and
ProGuide is an educational environment that allows novice
programming students to focus on the problem solving aspects.
The student can solve problems using the editor and simulation
features included. When necessary the environment establishes a
dialogue with the student, trying to help her/him to solve the
proposed problem. This dialogue may also include information
about basic programming constructs and/or similar problems
solved (totally or partially) and commented.
We believe ProGuide can help novice programming students,
especially those with more difficulties. The main idea is to
support them in their autonomous work, avoiding the common
situation where they can’t even start a solution.
ProGuide wasn’t yet fully evaluated with students, but we believe
that it will facilitate student’s learning and motivation. That was
the opinion of some programming teachers that made a
preliminary test of ProGuide. This preliminary evaluation resulted
in some suggestions that will be included in ProGuide next
version. These include improvements in the dialogue engine, a
software tool to facilitate problem specification, and so on.
ProGuide will be evaluated by Computer Science freshman in our
institutions in the beginning of the next school year.

4. REFERENCES
[1] Marcelino, M., Gomes, A., Dimitrov, N. and Mendes, A.

Using a computer-based interactive system for the
development of basic algorithmic and programming skills, In
Proceedings of CompSysTech04 - 5th International
Conference on Computer Systems and Technologies,
(Rousse, Bulgaria, June, 2004).

[2] Soloway, E. Learning to Program = Learning to Construct
Mechanisms and Explanations, Communications of the ACM,
29(9), Sep 1986, 850-858.

[3] Stasko, J. Tango: A Framework and System for Algorithm
Animation. IEEE Computer, 23(9), 1990, 27-39.

[4] Brusilovsy, P. and Spring, M. Adaptive, Engaging and
Explanatory Visualization in a C Programming Course . In
Proceedings of ED-MEDIA - World Conference on

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

111

Educational Multimedia, Hypermedia &
Telecommunications, (Lugano, Switzerland, June, 2004).

[5] Esteves, M. and Mendes, A. A Simulation Tool To Help
Learning Of Object Oriented Programming Basics. In
Proceedings of the 34th ASEE/IEEE Frontiers in Education
Conference, (Savannah, United States, October, 2004).

[6] Scanlan, D. Structured Flowcharts Outperform Pseudocode:
An Experimental Comparison, IEEE Software, 6(5), 1989,
28-36.

[7] Reiser, J., Friedmann, P., Gevins, J., Kimberg, D., Ranney,
M. and Romero, A. A Graphical Programming Language
Interface for an Intelligent Lisp Tutor. In Proceeding of
CHI’88: Conference on Human Factor in Computing
Systems, (Washington, United States, June, 1988), 39-44.

[8] Calloni, A. and Bagert J., Iconic Programming Proves
Effective for Teaching the First Year Programming
Sequence. In Proceeding of the ACM SIGSE 1997
Conference (San Jose, California, United States, February,
1997), 262-266.

[9] Hash, E. and Zachary, J. Automated Feedback on Programs
Means Students Need Less Help From Teachers. In
Proceedings of the ACM SIGSE’01 Conference, (Charlotte,
United States, February, 2001), 55-60.

[10] A.L.I.C.E. Artificial Intelligence Foundation, “A.L.I.C.E
Home Page” http://www.alicebot.org/, accessed on 22 June
2006.

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

	INTRODUCTION
	ProGuide ENVIRONMENT
	Editor Area
	Tutoring/Communication Area
	Example

	CONCLUSION
	REFERENCES

