
85

Software of Multi-Session Conference Implemented in
CallXML

Georgi Krastev
University of Rousse

8 Studentska Str, 7017 Rousse,
Bulgaria

+359 82 888 672

GKrastev@ecs.ru.acad.bg

Margarita Teodosieva
University of Rousse

8 Studentska Str, 7017 Rousse,
Bulgaria

+359 82 888 464

mst_ru_bg@yahoo.com

 Stoyanka Smrikarova
University of Rousse

8 Studentska Str, 7017 Rousse,
Bulgaria

+359 82 888 748

SSmrikarova@ecs.ru.acad.bg

ABSTRACT
This paper describes a developed application for carrying out a
multi-session conference based on wireless communication,
implemented in CallXML. To make the application more
effective a separate document (code) has been added which
checks the communication channel. After the check it informs
about the current state of the channel which determines whether
the conference will be realized.

Keywords
Multi-session conference, CallXML

1. INTRODUCTION
At the current stage of development Internet and the telephone
networks are converging. Today the telephone network [2] turns
more and more into a programming environment and in the near
future it will lead to changing our concepts for the abilities of
Internet. The research and development in the field of multimedia
conference connections are especially topical.

The generalized flowchart of the developed application for multi-
session conference [1, 3], i. e. a conference with the use of which
more than three people can converse in real time, is given in
figure 1. A separate document performs a check of the
communication channel. After the check it informs about the
current state of the channel, which determines whether the
conference will be realized.

Figure 1. Generalized flowchart

In the first document “Initial call” a session is established which
is connected to another separate session of the document “Test

call” by giving the number which should be dialed. In reality
before the necessary conference connection is established a
conference between the two sessions of these two documents is
established. In fact this number is the number of the actual
application, which opens the conference connection called
“Conference”. The code “Test call” checks the communications
channel and returns to “Initial call” a report about the state of this
channel. Depending on the reply “Initial call” generates different
states.

2. CREATING “INITIAL CALL”
In order to start a new session an outgoing call is initiated and the
call state is announced. In order to save the identifier of the
current session the variable session.ID is used. The new session
will have its own identifier. It is necessary to keep the identifier
of the current session and to pass the variable, which is holding it,
to the new session. The variable NumToCall is also passed – this
is the telephone number to be dialed.
<?xml version="1.0" encoding="UTF-8" ?>
<callxml version="2.0">
 <block>
 <assign var="ParentSessionID" value="$session.ID;"/>
 <assign var="NumToCall" value="1020304050"/>
 </block>
</callxml>
In order to start indeed a new session the *run is used. It initiates
a new session and “tells” the CallXML documents to use for the
new session the URL or URI, given in the value attribute. In the
same way as the goto element has a file attribute:
runvalue="TestCall.xml", the variable that is passed submit="*",
as well as the method through which the variable is sent:
method="get"; the attribute, called var, contains the identifier
session.ID of the new session: var="NewSessionID". The value of
this attribute is not the name of the new session, but the name of
the variable, which holds the identifier of the new session.
<?xml version="1.0" encoding="UTF-8" ?>
<callxml version="2.0">
 <block>
 <assign var="ParentSessionID" value="$session.ID;"/>
 <assign var="NumToCall" value="1020304050"/>
 <run value="TestCall.xml" submit="*" method="get" />
 <wait value="10s"/>

Test call

Success

Conference

Initial call

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

86

 </block>
</callxml>
Here events are sent to the opposite side, which in fact is sending
events from the new to the old session (that is why the variable
ParentSessionID was created). The most important here is that the
XML file will continue working even after the 'run' was launched
(unlike goto, which submits the control to another block). That is
why before accomplishing the outgoing connection the new
session holds by playing hold music or by waiting until the call is
made:
<?xml version="1.0" encoding="UTF-8" ?>
<callxml version="2.0">
 <block>
 <assign var="ParentSessionID" value="$session.ID;"/>
 <assign var="NumToCall" value="1020304050"/>

 <run value="TestCall.xml" submit="*" method="get" />
 <wait value="10s"/>
 <block label="HoldMusic" repeat="3">
 <playaudio format="audio/wav"
 value="HoldMusic.wav"termdigits=""/>
 </block>
 </block>
</callxml>

3. ADDING EXTERNAL EVENTS AND
HANDLING THEM
Here the external events are added, which are served using the
onExternalEvent handlers.
<?xml version="1.0" encoding="UTF-8" ?>
<callxml version="2.0">
 <block>
 <assign var="ParentSessionID" value="$session.ID;"/>
 <assign var="NumToCall" value="1020304050"/>
 <run value="TestCall.xml" submit="*" method="get" />
 <block label="HoldMusic" repeat="3">
 <playaudio format="audio/wav"
 value="HoldMusic.wav"
 termdigits=""/>
 <onexternalevent value="Success">
 <call value="$NumToCall;"
 maxtime="30s"/>
 <onmaxtime>
 <goto value=#test/>
 <hangup/>
 </onexternalevent>
 <onexternalevent value="Busy">

 <text>
 All lines are currently busy.
 Please hang up and try your call again later.
 </text>
 <hangup/>
 </onexternalevent>
 <onexternalevent value="TimedOut">
 <text>
 There is no answer.
 Please hang up and try your call again later.
 </text>
 <hangup/>
 </onexternalevent>
 <onexternalevent value="Error">
 <text>
 A connection can not be made at this time.
 Please hang up and try your call again later.
 </text>
 <sendemail from="MyApp@here.com"
 to="YourEmail@there.net" type="debug">
 We caught an error in our application. Details follow...
 </sendemail>
 <hangup/>
 </onexternalevent>
 </block>
 </block>
</callxml>
When a "Success" state is returned the conference application is
automatically dialed. In case during dial-up the line changes its
state then it is impossible to connect which will activate the
onmaxtime element.

4. CREATING A “TEST CALL”
Here the second file is created, called "TestCall.xml" – this is the
file, which initiates the outgoing call and then sends a message
back to the first session:
<?xml version="1.0" encoding="UTF-8" ?>
<callxml version="2.0">
 <block>
 <call value="$NumToCall;"
 maxtime="30s"/>
 <onanswer>
 <sendevent value="Success"
 session="$ParentSessionID;"/>
 <wait value="unlimited"/>
 </onanswer>
 <oncallfailure>

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

87

 <sendevent value="Busy"
 session="$ParentSessionID;"/>
 </oncallfailure>
 <onmaxtime>
 <sendevent value="TimedOut"
 session="$ParentSessionID;"/>
 </onmaxtime>
 <onerror>
 <sendevent value="Error"
 session="$ParentSessionID;"/>
 </onerror>
 </block>
</callxml>
The code dials the number and passes the attribute
maxtime="30s". Then one can see the element, which sends the
message between the sessions: sendevent. Here we can see how
the ParentSessionID variable is used, which was created in the
first script.
Using the "wait" command it is ensured that the session is held
open until the opposite side hangs up. This element is active only
when the opposite side answers. That is why in the first script
there was the WAV file hold music. The conference connection
connects the two sessions but a possible hang-up by one of the
sessions should be ensured. Using the wait command an unlimited
period of time is waited <wait value="Unlimited"/>.
Since using this application a conference call in real time is
established the given value of the attribute maxtime="30s" is not
sufficient.

5. CREATING A “CONFERENCE”
5.1 Preparing for the conference
When creating a conference it is necessary to assign a name to it,
which is selected arbitrarily. In order to make the application
flexible and to support simultaneous conferences numbering is
used. The <inputdigits> element allows for collecting digits and
writing them in the "conferenceName" variable.
<?xml version="1.0" encoding="UTF-8" ?>
<callxml version="2.0">
 <inputdigits
 label = "getconid"
 value = "enterConferenceID.wav"
 var = "conferenceName"
 maxdigits = "10"
 termdigits = "#"
 cleardigits = "false"
 maxtime = "30s"
 maxsilence = "5s">
 <ontermdigit value="#"/>
 <onmaxsilence>

 <playaudio value="noInput.wav"/>
 <goto value="#getconid"/>
 </onmaxsilence>
 <onmaxtime/>
 <onmaxdigits/>
 </inputdigits>
 <block>
 </block>
</callxml>

5.2 Creating a Conference
After giving a name to the conference the following should be
done:

• Inform the use that he/she is already in a conference
call;

• Initiate the actual conference call.
By playing audio sounds the user will be prepared for the
forthcoming conference. To create the conference the
<createconference> tag is used filling in some of its attributes –
the conference name and the variable name which will hold the
identifier of this conference. The name of this conference is used
to uniquely identify the conference – for example if an attempt is
made to create a conference with the same name then the
identifier of the already existing one will be returned. That is why
we assign the above given name:
<?xml version="1.0" encoding="UTF-8" ?>
<callxml version="2.0">
 <inputdigits
 label = "getconid"
 value = "enterConferenceID.wav"
 var = "conferenceName"
 maxdigits = "10"
 termdigits = "#"
 cleardigits = "false"
 maxtime = "30s"
 maxsilence = "5s">
 <ontermdigit value="#"/>
 <onmaxsilence>
 <playaudio value="noInput.wav"/>
 <goto value="#getconid"/>
 </onmaxsilence>
 <onmaxtime/>
 <onmaxdigits/>
 </inputdigits>
 <playaudio value="joinConference.wav"/>
 <block label="test">
 <createconference name="$conferenceName;"
var="conferenceid" />
 </block>

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

88

 <wait value="3000s" termdigits="123"/> </callxml>
 <ontermdigit value="2"> 5.3 Joining a Conference
 <goto value="#test"/> After everything described above is completed, it is necessary to

add a few elements to handle given events, so that the users are
able to connect after they have already left. To join the
<joinconference> element will be used and some of its attributes
are filled in: the conference identifier and the termdigits attribute.

 </ontermdigit>
 <ontermdigit value="3">
 <goto value="#getconid"/>

<?xml version="1.0" encoding="UTF-8" ?> </ontermdigit>
<callxml version="2.0"> </ontermdigit>
 <inputdigits </block>
 label = "getconid" <onerror>
 value = "enterConferenceID.wav" <sendemail from="MyApp@here.com"
 var = "conferenceName" to="YourEmail@there.net" type="debug">
 maxdigits = "10" We caught an error in our application. Details follow...
 termdigits = "#" </sendemail>
 cleardigits = "false" </onerror>
 maxtime = "30s" </callxml>
 maxsilence = "5s">

6. CONCLUSIONS <ontermdigit value="#"/> The undisputed advantage of the mobile phones is the
optimization in the quality of the voice devices. The developed
software allows for several lines in different sessions to connect
between each other in such a way that the participants can freely
talk to each other. This type of applications can be successfully
applied in the field of electronic commerce and the distance
technology for mobile learning.

 <onmaxsilence>
 <playaudio value="noInput.wav"/>
 <goto value="#getconid"/>
 </onmaxsilence>
 <onmaxtime/>
 <onmaxdigits/> 7. REFERENCES
 </inputdigits> [1] CallXML description, http://www.community.voxeo.com
 <playaudio value="joinConference.wav"/> [2] Faynberg, Igor, Gaurge Lawrence, Hui-Lan Lu, Convergent

Networks and Servers: Internet marking and PSTN, Wiley
Computer Publishing, 2000.

 <block label="test">
 <createconference name="$conferenceName;"
var="conferenceid" /> [3] King P. et. al., Handheld Device Markup Language

Specification, April 11, 2003.

 <joinconference id="$conferenceid;" termdigits="#"/>
 <ontermdigit>
 <playaudio value="leaveConference.wav" termdigits="123"/>

3rd E-Learning Conference Coimbra, Portugal, 7 – 8 September 2006

	INTRODUCTION
	CREATING “INITIAL CALL”
	ADDING EXTERNAL EVENTS AND HANDLING THEM
	CREATING A “TEST CALL”
	CREATING A “CONFERENCE”
	Preparing for the conference
	Creating a Conference
	Joining a Conference

	CONCLUSIONS
	REFERENCES

